Cours maths terminale

Les suites numériques : cours de matsh en terminale S

Les suites numériques dans un cours de maths en terminale S en enseignement obligatoire.

Nous étudierons la définition d’une suite numérique et son comportement.

I . Comportement d’une suite numérique :

Définition :

Une suite est une application de l’ensemble \mathbb{N} dans l’ensemble  \mathbb{R}.

\begin{array}{l|rcl} (U_n):  \mathbb{N}  \longrightarrow  \mathbb{N} \\  n  \longrightarrow  U_n \end{array} .

Définitions :

• Une suite (U_n)_{n\in\mathbb{N} est croissante  \Leftrightarrow\,\,\forall n \in \mathbb{N},\,U_n \le U_{n+1} .

• Une suite (U_n)_{n\in\mathbb{N} est décroissante  \Leftrightarrow\,\,\forall n \in \mathbb{N},\,U_n \ge U_{n+1} .

• Une suite (U_n)_{n\in\mathbb{N} est monotone signifie qu’elle est soit croissante soit décroissante.

Remarques :

• On parle aussi de suite  (U_n)_{n\in\mathbb{N} croissante à partir d’un rang  n_0\in\mathbb{N}  \Leftrightarrow\,\,\forall n \ge n_0,\,U_n \ge U_{n+1}

• On définit aussi les suites strictement croissantes ou décroissante en remplaçant les inégalités par des inégalités strictes .

Exemples :

Méthode 1 :

Considérons la suite  (U_n) définie par  \forall n \in \mathbb{N}\,,\,U_n=n^2  U_{n+1}-U_n={(n+1)}^2-n^2=n^2+2n+1-n^2=2n+1>1 . (car n est un entier naturel donc positif) donc  U_{n+1}-U_n>0\Leftrightarrow\,\,U_{n+1}>U_n donc la suite  (U_n) est strictement croissante sur  \mathbb{N}.

•Méthode 2 :

Pour une suite  (U_n) à termes strictement positifs : comparer  \frac{U_{n+1}}{U_n} . et 1.

Considérons la suite  (U_n) définie par  \forall n \in \mathbb{N}\,,\,U_n={exp n}^2

 \frac{U_{n+1}}{U_n}= \frac{exp (n+1)^2)}{exp n^2}=exp {(n+1)^2-n^2}=exp{n^2+2n+1-n^2}=exp{2n+1} > exp 0 car la fonction exp est strictement croissante sur  \mathbb{R} et 2n+1 >0 .

donc  \frac{U_{n+1}}{U_n}>1 car  exp 0=1

ainsi  \frac{U_{n+1}\times   U_n}{U_n}\,>1\,\times   U_n

car  (U_n) est à termes strictement positifs .

 U_{n+1}> U_n donc  (U_n) est strictement croissante sur  \mathbb{N} .

Définitions :

• Une suite (U_n) est majorée lorsqu’il existe un réel M (un majorant) tel que

\forall n \in \mathbb{N}\,,\, U_n\le\,M .

• Une suite (U_n) est minorée lorsqu’il existe un réel m tel que

\forall n \in \mathbb{N}\,,\, U_n\ge\,M .

• Une suite (U_n) est bornée lorsqu’elle est majorée et minorée .

Remarques :

· Si (U_n) est une suite croissante, alors elle est minorée par son premier terme  U_0 :  U_0 \le U_1\le U_2 \le .... \le U_n \le ....

· Si  (U_n) est une suite décroissante, alors elle est majorée par son premier terme  U_0 :  U_0 \ge U_1\ge U_2 \ge .... \ge U_n \le ....

Exemple :

· La suite  (U_n) définie par  \forall n \in \mathbb{N}\,,\, U_n = exp n + 1 est strictement croissante, elle est minorée par 1 par contre, elle n’est pas majorée.

· La suite  (V_n) définie par  \forall n \in \mathbb{N}\,,\, V_n = -2n-4 est strictement décroissante, majorée par -4, par contre elle n’est pas minorée .

· La suite  (W_n) définie par  \forall n \in \mathbb{N}\,,\, W_n = sin n est bornée, majorée par 1 et minorée par -1.

Théorème :
  •  Une suite croissante et majorée est convergente .
  •  Une suite décroissante et minorée est convergente .
Théorème :
  •  Toute suite croissante non majorée, diverge vers +\infty .
  •  Tout suite décroissante non minorée diverge vers  -\infty .

Exemple :

  • La suite  (U_n) définie par  \forall n \in \mathbb{N}\,,\, U_n = exp n + 1 est strictement croissante, elle n’est pas majorée donc diverge vers  +\infty .
  • La suite  (V_n) définie par  \forall n \in \mathbb{N}\,,\, V_n = -2n-4 est strictement décroissante, elle n’est pas minorée donc diverge vers  -\infty .
  •  La suite  (W_n) définie par  \forall n \in \mathbb{N}\,,\, W_n = sin n est bornée, elle est dite divergente .
Théorème :

Soit (U_n) définie par U_0 et  \forall n \,\in\, \mathbb{N}\,\,, U_n=f(U_{n+1}) . .

Si (U_n)converge vers  l et si f est continue en  l

alors

cette limite  lvérifie f(l)\,=\,l .

Exemple :

Considérons  (U_n) définie par  U_0=2,5 et  \forall n\,\, \in\,\, \mathbb{N},\,\, U_{n+1}=\frac{U_n^2}{3} .

 (U_n) est décroissante et minorée par 0 ( à montrer…).

Donc  (U_n) converge vers  l d’après le théorème précédent .

Posons  \forall x\,\, \in\,\, \mathbb{R^+},\,\, f(x)=\frac{x^2}{3}

On est amené à résoudre f(l)\,=\,l\Longleftrightarrow \frac{l^2}{3}=l\Longleftrightarrow l\times   (\frac{l}{3}-1)=0\Longleftrightarrow l=0\,\,ou\,\,l=3

or

 \forall n\,\, \in\,\, \mathbb{N},\,\, U_n\le 2,5

donc  l\neq 0

d’où

 l= 0=\lim_{n\to +\infty} U_n

II . Suites adjacentes :

Définition :

Dire que deux suites (U_n) et (V_n) sont adjacentes signifie que :

• L’une est croissante.

• L’autre est décroissante.

\lim_{n \to +\infty} (U_n-V_n)\,=\,0.

Exemple :

Considérons les deux suites numériques suivantes :

\forall n\,\ge 1,\,\, U_n=\,\sum_{k=1}^{n}\frac{1}{k^2}= \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\,\,\,\,,V_n=U_n+\frac{1}{n}

\forall n\, \ge 1,\,\, U_{n+1}=\,\sum_{k=1}^{n+1}\frac{1}{k^2}= \,\sum_{k=1}^{n}\frac{1}{k^2}+\frac{1}{(n+1)^2}\,=\,U_n+\frac{1}{(n+1)^2}.

Donc  U_{n+1}-U_n\,=\,\frac{1}{{n+1}^2}>0

donc  (U_n) est croissante .

\forall n\, \ge 1,\,\, V_{n+1}-V_n=\,U_{n+1}+\frac{1}{n+1}-U_n-\frac{1}{n}= \,U_{n+1}-U_n-\frac{1}{n(n+1)}.

\forall n\, \ge 1,\,\, V_{n+1}-V_n=\,U_{n+1}+\frac{1}{n+1}-U_n-\frac{1}{n}=\,\frac{1}{{n+1}^2}-\frac{1}{n(n+1)}

\forall n\, \ge 1,\,\, V_{n+1}-V_n=\,U_{n+1}+\frac{1}{n+1}-U_n-\frac{1}{n}=\,\frac{n}{n(n+1)^2}-\frac{n+1}{n(n+1)^2}

\forall n\, \ge 1,\,\, V_{n+1}-V_n=\,U_{n+1}+\frac{1}{n+1}-U_n-\frac{1}{n}=\,-\frac{1}{n(n+1)^2}<0

donc  (V_n) est décroissante .
 V_n\,-\,U_n=\frac{1}{n}
 \fbox{ \lim_{n\to +\infty} ( V_n\,-\,U_n)=0}

Conclusion :

Les deux suites  (U_n) et  (V_n) sont adjacentes .

Définition :

Si deux suites sont adjacentes alors elles convergent vers la même limite.

Exemple :

Reprenons notre exemple précédente :

\forall n\,\ge 1,\,\, U_n=\,\sum_{k=1}^{n}\frac{1}{k^2}= \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\,\,\,\,,V_n=U_n+\frac{1}{n}

Les deux suites  (U_n) et  (V_n) sont adjacentes donc elles sont convergentes et convergent vers la même limite .

Nous pourrions montrer que :
 \fbox{ \lim_{n\to +\infty} ( V_n\)=\lim_{n\to +\infty} (U_n)=\frac{\pi^2}{6}


Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «les suites numériques : cours de matsh en terminale S» au format PDF.



Télécharger nos applications gratuites avec tous les cours,exercices corrigés Application Mathovore sur Google Play Store. Application Mathovore sur Apple Store.

.

Les dernières fiches mises à jour

Voici les dernières ressources mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

Des cours et exercices corrigés en terminale en vidéos

Les fiches de cours et exercices de maths les plus consultées Concours : gagnez une calculatrice TEXAS INSTRUMENT (TI)

Nouveau concours avec une calculatrice Texas Instrument à gagner.
Le tirage au sort sera effectué avec un logiciel de manière aléatoire chaque début de mois et les résultats seront annoncés sur notre page facebook.
Les gagnants seront tirés au sort parmi les bonnes réponses de nos abonnés de notre nouvelle chaîne Youtube.


je participe au tirage au sort en m'abonnant à la chaîne YouTube Je participe au concours afin de gagner la calculatrice.

D'autres documents similaires

Inscription gratuite à Mathovore.  Mathovore c'est 1 610 831 cours et exercices de maths téléchargés en PDF et 149 341 membres.
Rejoignez-nous : inscription gratuite.