Le théorème de Gauss : cours de maths en terminale spécialité en PDF.
Mis à jour le 18 avril 2025
I. Enoncé du théorème de Gauss.
Soient a,b et c sont des entiers strictement positifs tels que a divise le produit bc et a est premier avec b.
Alors a divise c.
Autrement dit : si un entier naturel divise un produit de deux facteurs et s’il est premier avec l’un d’eux, il divise l’autre.
Démonstration :
Puisque a et b sont premiers entre eux, d’après le théorème de Bezout, il existe des entiers relatifs
u et v tels que .
Donc . Or a divise ac et bc donc a divise
.
Il en résulte que a divise c.
II. Corollaire du théorème.
Démonstration :
Par hypothèse, et
avec q et q’ deux entiers naturels.
Donc .
Puisque b divise et que b est premier avec a, il divise q.
Donc et
.
On conclut que le produit divise n.
Exemple :
Si un nombre est divisible par 3,7 et 11, alors il est divisible par 231 car 3,7 et 11 sont des entiers premiers entre eux deux à deux.
Application :
Pour prouver, par exemple, qu’un nombre est divisible par 6, il suffit de prouver qu’il est divisible par 2 et 3 car 2 et 3 sont premiers entre eux.
Ainsi pour tout entier naturel n>1, (n-1)n(n+1) est divisible par 6.
En effet, n(n+1) est le produit de deux entiers consécutifs : il est donc divisible par 2.
et (n-1)n(n+1) est le produit de trois entiers consécutifs : il est donc divisible par 3.
Il en résulte que (n-1)n(n+1) est divisible par 6.
Attention :
Si on démontre qu’un nombre est divisible par 4 et 6, on peut seulement conclure qu’il est divisible par 12, et non pas par 24.Ainsi 36 est divisible par 4 et 6, mais n’est pas divisible par 24.
Télécharger et imprimer ce document en PDF gratuitement :
Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «le théorème de Gauss : cours de maths en terminale spécialité en PDF.» au format PDF.
Ressources de terminale
Cours de terminale
Exercices de terminale
L'équipe Mathovore
12 Enseignants Titulaires
Collectif d'enseignants titulaires de l'Éducation Nationale, spécialisés en mathématiques en primaire, au collège, au lycée et post-bac.
Notre équipe collaborative enrichit constamment nos ressources pédagogiques.
Nos applications
Téléchargez gratuitement la dernière version de nos applications.