Sommaire de cette fiche
I. Enoncé du théorème de Gauss.
Soient a,b et c sont des entiers strictement positifs tels que a divise le produit bc et a est premier avec b.
Alors a divise c.
Autrement dit : si un entier naturel divise un produit de deux facteurs et s’il est premier avec l’un d’eux, il divise l’autre.
Démonstration :
Puisque a et b sont premiers entre eux, d’après le théorème de Bezout, il existe des entiers relatifs
u et v tels que .
Donc . Or a divise ac et bc donc a divise
.
Il en résulte que a divise c.
II. Corollaire du théorème.
Démonstration :
Par hypothèse, et
avec q et q’ deux entiers naturels.
Donc .
Puisque b divise et que b est premier avec a, il divise q.
Donc et
.
On conclut que le produit divise n.
Exemple :
Si un nombre est divisible par 3,7 et 11, alors il est divisible par 231 car 3,7 et 11 sont des entiers premiers entre eux deux à deux.
Application :
Pour prouver, par exemple, qu’un nombre est divisible par 6, il suffit de prouver qu’il est divisible par 2 et 3 car 2 et 3 sont premiers entre eux.
Ainsi pour tout entier naturel n>1, (n-1)n(n+1) est divisible par 6.
En effet, n(n+1) est le produit de deux entiers consécutifs : il est donc divisible par 2.
et (n-1)n(n+1) est le produit de trois entiers consécutifs : il est donc divisible par 3.
Il en résulte que (n-1)n(n+1) est divisible par 6.
Attention :
L’hypothèses a et b premiers entre eux est une hypothèse essentielle.
Si on démontre qu’un nombre est divisible par 4 et 6, on peut seulement conclure qu’il est divisible par 12, et non pas par 24.Ainsi 36 est divisible par 4 et 6, mais n’est pas divisible par 24.
Cette publication est également disponible en :
English (Anglais)
Español (Espagnol)
العربية (Arabe)
Télécharger et imprimer ce document en PDF gratuitement
Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «le théorème de Gauss : cours de maths en terminale en PDF.» au format PDF.
D'autres fiches dans la section cours de maths en terminale S
- Le produit scalaire : cours de maths en terminale à télécharger en PDF.
- Nombres complexes : cours de maths en terminale en PDF.
- Matrices et opérations : cours de maths en terminale spécialité en PDF.
- Arithmétique : cours de maths en terminale spécialité.
- Les suites numériques : cours de maths en terminale en PDF.
- Les limites et les asymptotes : cours de maths en terminale.
- Les probabilités conditionnelles : cours de maths en terminale en PDF.
- La fonction logarithme népérien : cours de maths en terminale.
- Géométrie dans l’espace : cours de maths en terminale en PDF.
- Le raisonnement par récurrence : cours de maths en terminale en PDF.
D'autres fiches similaires à le théorème de Gauss : cours de maths en terminale en PDF..
- 91
L'arithmétique dans un cours de maths en terminale spécialité. Ce cours fait intervenir les notions de divisibilité, multiples, diviseurs, congruences, les nombres premiers et la décomposition en facteur premier d'un nombre entier. Egalement la division Euclidienne, le théorème de Bézout et le théorème de Gauss. I. Divisibilité. Définition : Soient…
- 91
Un cours d'arithmétique en terminale spécialité sur la divisibilité et les congruences.Dans cette leçon, nous aborderons la divisibilité dans et la division euclidienne dans et ainsi que les entiers congrus modulo n et les propriétés des congruences. I. Divisibilité et division euclidienne. 1.Divisibilité dans Z. Définition : a et b sont deux entiers…
- 91
Les dernières fiches mises à jour.
Voici les dernières ressources similaires à le théorème de Gauss : cours de maths en terminale en PDF. mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.