Conjugué, module et argument d’un nombre complexe : cours en terminale en PDF.

cours de maths en terminale S Signaler une erreur sur cette page de Mathovore.Signaler une erreur / Remarque ? cours maths terminale
Les nombres complexes avec un cours de maths en terminale faisant intervenir la notion de conjugué et d’argument.

I. Conjugué d’un nombre complexe.

1. Définition du conjugué.

Définition :

Soit z un nombre complexe de forme algébrique z\,=\,x+iy (x, y réels).

Le nombre complexe x\,-\,iy, noté \,\overline{z}, est appelé conjugué du nombre complexe z.

Exemples :

 \,\overline{2+3i}=2-3i;  \,\overline{3}=3 ;  \,\overline{-7}=-7;  \,\overline{2i}=-2i ;  \,\overline{-5i}={5i}.

Conséquences :
  1. \,\overline{\,\overline{z}}=z
  2. z\,\overline{z}=x^2+y^2
  3. z+\,\overline{z}=2\times   Re(z)=2x
  4. z-\,\overline{z}=2\times   Im(z)=2y

2. Interprétation géométrique.

Dans le plan complexe, considérons un point M d’affixe z alors le pont M’ d’affixe z est l’image de M par la symétrie par rapport à l’axe des réels (abscisses).

Propriétés :

Soit z un nombre complexe.

    1. z est réel \Longleftrightarrow z=\,\overline{z}.
    2. z est imaginaire pur \Longleftrightarrow z\,=\,-\,\,\overline{z}.

cours maths

3. Conjugué et opérations.

Propriétés :

Soient z et z’ deux nombres complexes et n un entier naturel non nul.

\,\overline{z+z'}=\,\overline{z}+\,\overline{z'}

\,\overline{zz'}=\,\overline{z}\,\overline{z'}

\,\overline{z^n}^n=\,\overline{z}^n

Si\, z\neq\,0 ,\, \,\,\overline{\frac{1}{z}}=\frac{1}{\,\overline{z}}

Si\, z'\neq\,0 ,\, \,\,\overline{\frac{z}{z'}}=\frac{\,\overline{z}}{\,\overline{z'}}

II. Module et argument d’un nombre complexe.

1. Module d’un nombre complexe.

Définition :

Soit z un nombre complexe de forme algébrique x+iy (x et y réels).

Le module de z est le nombre réel positif noté lzl=sqrt{x^2+y2} .

Interprétation géométrique :
Dans le plan complexe, si M a pour affixe z alors OM=lzl.

cours maths

Remarque :

  1. Si x est un réel, le module de x est égal à la valeur absolue de x.
  2. |z\,|=0 si et seulement z=0 ( car OM=0 équivaut à O=M)
  3. z\overline{z}=\,|\,z\,|^2.

2. Arguments d’un nombres complexe non nul.

Définition :

Soit z un nombre complexe non nul, de point image M.

On appelle argument de z et on note arg(z), toute mesure en radian de l’angle orienté (\vec{OU},\vec{OM}).

cours maths

Remarque:
Un nombre complexe non nul z a une infinité d’argument; si  \theta est l’un d’entre eux alors tous les autres sont de la forme  \theta\,+\,2k\pi \,\,(k \in \mathbb{Z}).

On note  arg(z)=\,\theta\,[2\pi] ou plus simplement arg(z)=  \theta

3. Forme trigonométrique d’un nombre complexe non nul.

3.1. Repérages cartésien et polaire :

Dans le plan complexe un point M distinct de O peut être repéré par ses coordonnées cartésienne (x;y) ou par un couple  (r\,,\, \theta) de coordonnées polaires avec OM=r et  (\vec{OU}\,,\,\vec{OM}),

on a alors :
 \fbox{\{{x\,=\,rcos\theta\atop y\,=\,rsin\theta}}

3.2 Forme trigonométrique :

Définition :

Soit z un nombre complexe non nul.

L’écriture z\,=\,r(cos\theta\,+\,isin\theta) avec r=\,|\,z\,| et  \theta\,\,=arg(z) est appelée forme trigonométrique de z.

cours maths

Propriété :

Deux nombres complexes non nuls sont égaux si et seulement si, ils ont même module et même argument à un multiple de 2pi près.

Propriété :

Si z\,=\,r(cos\theta\,+\,isin\theta) avec r>0alors r=\,|\,z\,| et \theta\,\,=arg(z).

Cette publication est également disponible en : English (Anglais) Español (Espagnol) العربية (Arabe)


Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «conjugué, module et argument d'un nombre complexe : cours en terminale en PDF.» au format PDF.



D'autres fiches dans la section cours de maths en terminale S


Télécharger nos applications gratuites avec tous les cours et exercices corrigés.

Application Mathovore sur Google Play Store.    Application Mathovore sur Apple Store.     Suivez-nous sur YouTube.

D'autres fiches similaires à conjugué, module et argument d'un nombre complexe : cours en terminale en PDF..


  • 86
    Le raisonnement par récurrence : cours de maths en terminale en PDF.Le raisonnement par récurrence dans un cours de maths en terminale et la rédaction de la démonstration. 1.Principe de récurrence et ses axiomes : Axiome : Soit P(n) une propriété qui dépend d’un entier naturel n. Si les deux conditions suivantes sont réunies : , • P(n) est vraie pour…
  • 86
    Nombres complexes : cours de maths en terminale en PDF.Les nombres complexes dans un cours de maths en terminale que vous pouvez consulter en ligne ou télécharger en PDF gratuitement afin de l'imprimer et de travailler en totale autonomie sur table. I. Notion de nombre complexe : 1. Théorème : Théorème : Il existe un ensemble noté , appelé…
  • 85
    Cours de maths en terminale à télécharger en PDF.Des cours de maths en terminale que vous pouvez télécharger en PDF gratuitement puis les imprimer sur les très nombreux chapitres de ce niveau qui représente la dernière étape du lycée qui se conclue par les épreuves du baccalauréat durant 4 heures. Les leçons parcourent tous les chapitres comme les nombres,…


Les dernières fiches mises à jour.

Voici les dernières ressources similaires à conjugué, module et argument d'un nombre complexe : cours en terminale en PDF. mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

  1. Abonnements
  2. Maths : cours et exercices corrigés à télécharger en PDF.
  3. Subscriptions
  4. Suscripciones
  5. الاشتراكات

Inscription gratuite à Mathovore.  Mathovore c'est 13 703 289 cours et exercices de maths téléchargés en PDF.

Mathovore

GRATUIT
VOIR