Conjugué, module et argument d’un nombre complexe : cours de maths en terminale en PDF.

Mis à jour le 17 mai 2025

Accueil >> Lycée >> Maths Terminale >> Cours de maths >> Cours en Terminale >> Conjugué, module et argument d’un nombre complexe : cours de maths en terminale en PDF.

🧮Cours de Mathématiques
Terminale • Lycée
Conjugué, module et argument d’un nombre complexe
📖 Temps de lecture : 5 min
🎯 Niveau : Lycée
📱 Format : Gratuit
📄 PDF : Disponible
Les nombres complexes avec un cours de maths en terminale faisant intervenir la notion de conjugué et d’argument.

I. Conjugué d’un nombre complexe.

1. Définition du conjugué.

Définition :

Soit z un nombre complexe de forme algébrique z\,=\,x+iy (x, y réels).

Le nombre complexe x\,-\,iy, noté \,\overline{z}, est appelé conjugué du nombre complexe z.

Exemples :

 \,\overline{2+3i}=2-3i;  \,\overline{3}=3 ;  \,\overline{-7}=-7;  \,\overline{2i}=-2i ;  \,\overline{-5i}={5i}.

Conséquences :
  1. \,\overline{\,\overline{z}}=z
  2. z\,\overline{z}=x^2+y^2
  3. z+\,\overline{z}=2\times   Re(z)=2x
  4. z-\,\overline{z}=2\times   Im(z)=2y

2. Interprétation géométrique.

Dans le plan complexe, considérons un point M d’affixe z alors le pont M’ d’affixe z est l’image de M par la symétrie par rapport à l’axe des réels (abscisses).

Propriétés :

Soit z un nombre complexe.

    1. z est réel \Longleftrightarrow z=\,\overline{z}.
    2. z est imaginaire pur \Longleftrightarrow z\,=\,-\,\,\overline{z}.

3. Conjugué et opérations.

Propriétés :

Soient z et z’ deux nombres complexes et n un entier naturel non nul.

\,\overline{z+z'}=\,\overline{z}+\,\overline{z'}

\,\overline{zz'}=\,\overline{z}\,\overline{z'}

\,\overline{z^n}^n=\,\overline{z}^n

Si\, z\neq\,0 ,\, \,\,\overline{\frac{1}{z}}=\frac{1}{\,\overline{z}}

Si\, z'\neq\,0 ,\, \,\,\overline{\frac{z}{z'}}=\frac{\,\overline{z}}{\,\overline{z'}}

II. Module et argument d’un nombre complexe.

1. Module d’un nombre complexe.

Définition :

Soit z un nombre complexe de forme algébrique x+iy (x et y réels).

Le module de z est le nombre réel positif noté lzl=sqrt{x^2+y2} .

Interprétation géométrique :
Dans le plan complexe, si M a pour affixe z alors OM=lzl.

Remarque :

  1. Si x est un réel, le module de x est égal à la valeur absolue de x.
  2. |z\,|=0 si et seulement z=0 ( car OM=0 équivaut à O=M)
  3. z\overline{z}=\,|\,z\,|^2.

2. Arguments d’un nombres complexe non nul.

Définition :

Soit z un nombre complexe non nul, de point image M.

On appelle argument de z et on note arg(z), toute mesure en radian de l’angle orienté (\vec{OU},\vec{OM}).

Remarque:
Un nombre complexe non nul z a une infinité d’argument; si  \theta est l’un d’entre eux alors tous les autres sont de la forme  \theta\,+\,2k\pi \,\,(k \in \mathbb{Z}).

On note  arg(z)=\,\theta\,[2\pi] ou plus simplement arg(z)=  \theta

3. Forme trigonométrique d’un nombre complexe non nul.

3.1. Repérages cartésien et polaire :

Dans le plan complexe un point M distinct de O peut être repéré par ses coordonnées cartésienne (x;y) ou par un couple  (r\,,\, \theta) de coordonnées polaires avec OM=r et  (\vec{OU}\,,\,\vec{OM}),

on a alors :
 \fbox{\{{x\,=\,rcos\theta\atop y\,=\,rsin\theta}}

3.2 Forme trigonométrique :

Définition :

Soit z un nombre complexe non nul.

L’écriture z\,=\,r(cos\theta\,+\,isin\theta) avec r=\,|\,z\,| et  \theta\,\,=arg(z) est appelée forme trigonométrique de z.

cours maths

Propriété :

Deux nombres complexes non nuls sont égaux si et seulement si, ils ont même module et même argument à un multiple de 2pi près.

Propriété :

Si z\,=\,r(cos\theta\,+\,isin\theta) avec r>0alors r=\,|\,z\,| et \theta\,\,=arg(z).

4.3/5 - (20979 votes)
×12

L’équipe Mathovore

Contenu mis à jour quotidiennement
12 Enseignants Titulaires

Collectif d'enseignants titulaires de l'Éducation Nationale, spécialisés en mathématiques en primaire, au collège, au lycée et post-bac.
Notre équipe collaborative enrichit constamment nos ressources pédagogiques.

12 Professeurs
200+ Années cumulées
Quotidien Mise à jour

Télécharger et imprimer ce document en PDF gratuitement :

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «conjugué, module et argument d’un nombre complexe : cours de maths en terminale en PDF.» au format PDF.


Nos applications

Téléchargez gratuitement la dernière version de nos applications.
Application Mathovore sur Google Play Store. Application Mathovore sur Apple Store.


Inscription gratuite à Mathovore.  Mathovore c'est 14 122 542 cours et exercices de maths téléchargés en PDF.