Divisibilité et congruences : cours de maths en terminale spécialité en PDF.

Aidez-nous à améliorer cette page en signalant une erreur Signaler une erreur Aidez-nous à améliorer cette page en signalant une erreur
L’arithmétique à travers un cours de maths en terminale spécialité sur la divisibilité et les congruences.Dans cette leçon, nous aborderons la divisibilité dans \mathbb{Z} et la division euclidienne dans \mathbb{N} et \mathbb{Z} ainsi que les entiers congrus modulo n et les propriétés des congruences.

I. Divisibilité et division euclidienne.

1.Divisibilité dans Z.

Définition :

a et b sont deux entiers relatifs (b\neq0).

Dire que b divise a signifie qu’il existe un entier k tel que a=kb.

Vocabulaire : on dit alors que b est un diviseur de a ou que a est divisible par b.

On traduit aussi cette définition en disant que a est un multiple de b.

Exemple :

  1. -\,45\,=(\,-5\,)\,\times  \,9\,=\,5\,\times  \,(-9) donc – 5, 5,9 et – 9  divisent -45.
  2. Les diviseurs dans \mathbb{Z} du chiffre 6 sont -6;-3;-2;-1;1;2;3;6.

Remarque :
1 et -1 tout entier relatif n car 1\,\times  \,n=(-1)\,\times  \,(-n)=n.

2.Propriétés de la divisibilité.

Comparaison :

a et b sont deux entiers relatifs (b\neq0), il résulte de la définition que :

  1. Si b divise a alors – b divise a.
  2. Si b divise a et si a\neq0 , alors  \,|b\,\,|\leq\,\,\,|a\,\,|.
Théorème :

a et b sont deux entiers relatifs non nuls.

Si a divise b et b divise a, alors a=b ou a=- b.

Théorème (transitivité):

Soient a,b et c sont trois entiers relatifs (a\neq0b\neq0).

Si a divise b et b divise c alors a divise c.

Théorème : divisibilité d’une combinaison linéaire.

Soient a,b,d sont trois entiers relatifs (d\neq0).

Si d divise a et b, alors d divise tout entier ma+nb (m,n\in\mathbb{Z}).

En particulier, d divise leur somme a\,+\,b et leur différence a-b.

Preuve :

Par hypothèses, on peut écrire a=dk et b=dk' avec k et k’ entiers.

ma+nb=mdk\,+\,ndk'=(mk+nk')d avec mk+nk' entiers, donc d divise ma\,+\,nb.

3.La division euclidienne dans N.

Théorème :

a et b sont deux entiers naturels et b est non nul.Il existe un couple unique (q;r) d’entiers naturels tel que a=bq+r et 0\leq\,\,r<b.

Définition :

a et b sont deux entiers naturels, b\neq0.Effectuer la division euclidienne dans \mathbb{N} de a par b, c’est déterminer le couple d’entiers naturels (q;r) tel que a=bq+r et 0\leq\,\,r<b.

Vocabulaire :

a est le dividende, b est le diviseur, q est le quotient et r est le reste.

Conséquence :

b divise a, si et seulement si, dans la division de a par b, le reste est nul.

4.La division euclidienne dans Z

Théorème : (admis)

a et b sont deux entiers relatifs avec b non nul.

Alors il existe un unique couple (q;r) tel que q entier relatif et r entier naturel tel que a=bq+r et 0\leq\,\,r<\,|b\,\,|.

Exemple :

a=-50,b=-3;\,-50=-3\,\times  \,16-2.

Pour obtenir un reste positif, on écrit  -50=-3\,\times  \,16-3+3-2=-3\,\times  \,17+1.

Ainsi q=17 et r=1.

II. Congruences.

1.Entiers congrus modulo m.

Définition :

m est un entier naturel non nul.

Dire que deux entiers relatifs a et b sont congrus modulo m signifie qu’ils ont le même reste

dans la division euclidienne par m.

Notation :

On écrit a\equiv\,b(mod\,m).On lit a est congru à b modulo m.

Exemple :

11\equiv\,5(mod\,3) et -4\equiv\,2(mod\,3).

congruence

Théorème :

m est un entier naturel non nul.

Pour tous entiers relatifs a et b, a\equiv\,b(mod\,m)\Leftrightarrow\,m\,divise\,a.

Remarques :

  1. Si r est le reste de la division euclidienne de a par m, alors a\equiv\,r(mod\,m).
  2. a=0(mod\,m) si et seulement si m divise a.

2.Propriétés des congruences.

Théorème : (transitivité)

m est un entier naturel non nul.Pour tous entier relatif a,b et c,

si a\equiv\,b(mod\,m) et b\equiv\,c(mod\,m), alors a\equiv\,c(mod\,m).

Théorème : (congruences et opérations)

m est un entier naturel non nul et a,b,a’,b’ sont des entiers relatifs.si a\equiv\,b(mod\,m) et a'\equiv\,b'(mod\,m), alors :

\star\, a+a'\equiv\,b+b'(mod\,m)

\star\, a-a'\equiv\,b-b'(mod\,m)

\star\, aa'\equiv\,bb'(mod\,m)

Conséquence :
a\equiv\,b(mod\,m), alors pour tout entier p positif, a^p\equiv\,b^p(mod\,m).
Aidez-nous à améliorer cette page en signalant une erreur Signaler une erreur Aidez-nous à améliorer cette page en signalant une erreur

Télécharger et imprimer ce document en PDF gratuitement :

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «divisibilité et congruences : cours de maths en terminale spécialité en PDF.» au format PDF.

Vous devez vous inscrire ou vous connecter à votre compte afin de pouvoir télécharger ce document au format PDF.

Réviser les leçons et les exercices avec nos Q.C.M :


D'autres utilitaires pour progresser en autonomie :


Inscription gratuite à Mathovore.  Mathovore c'est 14 099 022 cours et exercices de maths téléchargés en PDF.

Mathovore

GRATUIT
VOIR