Barycentre : exercices de maths en terminale corrigés en PDF.
Mis à jour le 27 mars 2025
Exercice 1
Soit ABC un triangle, D la barycentre de (A,1)(B,2)(C,3), E le barycentre de (A,2)(B,3)(C,1) et F le barycentre de (A,3)(B,1)(C,2).
Montrer que le centre de gravité du triangle ABC est aussi le centre de gravité du triangle DEF.
Exercice 2
A et B sont deux points distincts.
On considère C le barycentre de (A,2)(B,3) et D le barycentre de (A,3)(B,2).
a) Déterminer la nature de l’ensemble des points M tels que .
b) Déterminer la nature de l’ensemble des points M tels que :
Exercice 3
Soit ABC un triangle .
a) Déterminer la nature de l’ensemble des points M tels que soit colinéaire à
b) Déterminer la nature de l’ensemble des points M tels que
Exercice 4
A, B, C et D sont quatre points distincts.
On note K le barycentre de (A,3)(B,1), J le milieu de [DC], G le centre de gravité de BCD et I le milieu de [AG].
Montrer que les points I, J et K sont alignés.
Exercice 5
Soit ABCD un parallélogramme de centre O, G le barycentre de (A,2)(B,1) et H le barycentre de (C,2)(D,1).
a) Montrer que les droites (AC), (BD) et (GH) sont concourantes.
b) Soit E le barycentre de (G,3)(D,1). Montrer que E est le milieu de [AO].
Exercice 6
1. Construire le barycentre des points {(A,1);(B,2)} sachant que AB = 6 cm .
2. Construire le barycentre des points {(A,3);(B,-3)} sachant que AB = 8 cm .
3. Construire le barycentre des points {(A,1);(B,-2)} sachant que AB = 4 cm .
4. Construire le barycentre des points {(M,-3);(N,-2)} sachant que MN = 10 cm .
Exercice 7
1. Décrire l’ensemble des points M du plan tels que
2. Décrire l’ensemble des points M du plan tels que
3. Décrire l’ensemble des points M du plan tels que
4. Décrire l’ensemble des points M du plan tels que
Exercice 8
Soit R un repère orthonormé du plan .
1. Construire le barycentre G des points {(A,2);(B,3)} sachant que les coordonnees, dans R, de ces points sont A(3;4) et B(-1;2) .
2. On note l’ensemble des points M du plan tels que
.
Déterminer l’équation de l’ensemble .
2. On note l’ensemble des points M du plan tels que
.
Déterminer l’équation de l’ensemble .
Exercice 9 – Ensemble de points
0. Dans un repère orthonormé du plan,
placer les points A(– 2 ; 0), B(4 ; 0), C(2 ; 4) et D(0 ; 4).
1. Démontrer que ABCD est un trapèze isocèle.
2. Déterminer les réels et
tels que O soit le barycentre de (A ;
) (B ; 1) (C ; 1) (D ;
) .
3. Soit I le milieu de [BC] et G le point tel que .
a. Déterminer des réels a et b tels que G soit le barycentre de (A ; a) (D ; b).
b. Démontrer que G, O et I sont alignés. Préciser la position de O sur [GI].
4.
a. Déterminer et construire l’ensemble des points M du plan tels que
.
b. Justifier que O appartient à .
5.
a. Déterminer et construire l’ensemble Des points M du plan tels que :
b. Justifier que B et D appartiennent à .
Exercice 10 – Carré et parallélogramme
ABC est un triangle de sens direct.
DBA est un triangle isocèle et rectangle en D de sens direct.
ACE est un triangle isocèle et rectangle en E de sens direct.
On construit le point L tel que .
1. Faire une figure.
2. Démontrer que EDL est un triangle rectangle isocèle en E de sens direct. .
Exercice 11 – Extrait du baccalauréat S sur le barycentre
On considère un triangle ABC du plan .
1.a. Déterminer et construire le point G, barycentre du système de points pondérés :
.
b. Déterminer et construire le point G’, barycentre du système de points pondérés :
.
2.a. Soit J le milieu de [AB].
Exprimer et
en fonction de
et
et en déduire l’intersection des droites (GG’) et (AB) .
b. Montrer que le barycentre I du système de points pondérés :
appartient à (GG’) .
3. Soit D un point quelconque du plan et O le milieu de [CD] et K le milieu de [OA] .
a. Déterminer trois réels a, b, c tels que K soit le barycentre du système de points pondérés :
.
b. Soit X le point d’intersection de (DK) et (AC).
Déterminer les réels a’ et c’ tels que X soit barycentre du système de points pondérés :
.
Télécharger et imprimer ce document en PDF gratuitement :
Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «barycentre : exercices de maths en terminale corrigés en PDF.» au format PDF.
Ressources de terminale
Cours de terminale
Exercices de terminale
L'équipe Mathovore
12 Enseignants Titulaires
Collectif d'enseignants titulaires de l'Éducation Nationale, spécialisés en mathématiques en primaire, au collège, au lycée et post-bac.
Notre équipe collaborative enrichit constamment nos ressources pédagogiques.
Nos applications
Téléchargez gratuitement la dernière version de nos applications.