Exercices maths terminale S et ES

Logarithmes : exercices Maths Terminale corrigés en PDF

Des exercices de maths en terminale S sur les fonctions logarithmes, vous pouvez également consulter et réviser avec les exercices corrigés en terminale S en PDF.
Exercice 1
• Exprimer en fonction de ln 2 et ln 3 :
 ln\,72\,;\,ln\frac{1}{8}\,;\,\frac{1}{8}ln\,256\,.
• Exprimer en fonction de ln 2 et ln 5 :
 ln\,250\,;\,ln200\,;\,ln1,25\,;ln\,10^{-4}\,.
Exercice 2
Simplifier les expressions suivantes :
 a=ln\,e^2+ln\sqrt{e};b=ln(e\sqrt{e});c=lne+ln(\frac{1}{e});d=lne^2-lne^{-2}\,.
Exercice 3
Soit n un entier naturel non nul et a un nombre réel strictement positif.
Calculer la somme :
 S=lna^n+lna^{n-1}+...+lna+ln1+ln\frac{1}{a}+...+ln\frac{1}{a^{n-1}}+ln\frac{1}{a^n}\,.
Exercice 4
Etudier les limites suivantes :
a.  \lim_{x\to +\infty} ln(1+x^2) \,.
b.  \lim_{x\to +\infty} ln(1+\frac{1}{x^2}) \,.
c.  \lim_{x\to -3} ln(3-2x-x^2) \,.
d.  \lim_{x\to -1} ln(\frac{2x+3}{x+1}) \,.
d.  \lim_{x\to +\infty} ln(\frac{2x+3}{x+1}) \,.
e.  \lim_{x\to 0} ln(cosx) \,.
f.  \lim_{x\to +\infty} \frac{xlnx}{x+1} \,.
Exercice 5 : recherche d’asymptotes.
Indiquer l’ensemble de définition de la fonction f, puis étudier les limites aux bornes de cet ensemble.
Préciser les asymptotes à la courbe représentant f.
 f(x)=\frac{3lnx+1}{x} \,.
Exercice 6
Résoudre dans  \mathbb{R} \,. chacune des équations suivantes :
a.  lnx=2 \,.
b.  ln\frac{1}{x}=3 \,.
c.  lnx^3=27 \,.
d.  ln(2x+1)=ln(-2x-3)\,.
e.  (lnx)^2-2lnx-3=0 \,.
Exercice 7
Résoudre le système suivant :
 \{{x+y=2\atop lnx-lny=ln3} \,.
Exercice 8
Déterminer la fonction dérivée de la fonction f sur l’ensemble  D \,.
a.  f(x)=ln(-x)\,\,D=]-\infty\,;\,0[ \,.
b.  f(x)=ln(\sqrt{x})\,\,D=]0\,;\,+\infty\,[ \,.
c.  f(x)=ln(\frac{x+1}{x-1})\,\,D=]-\infty\,;\,-1[ \,.

Exercice 9 – Equation du troisiéme degré dans le corps des complexes
On considère  dans l’ensemble des complexes le polynôme :
P(z) = z³ + (2i-5)z² +7(1-i)z -2 +6i
1-     Sachant  que  a  étant un réel, on a  P(a) = 0. Déterminez  a.
2-     Trouvez toutes les solutions de P(z) =0. En déduire une factorisation de P(z).
Exercice 10 – Inéquations
Résoudre les inéquations suivantes :
1.\,lnx>2\\2.\,2lnx-1<5\\3.\,ln(2x-1)-ln(2x+1)\leq\, ln(x+2)
Exercice 11 – Equations et logarithmes népériens
1.\,ln(4x^2-1)=ln(x+2)\\2.\,ln(2x-1)+ln(2x+1)=ln(x+2)\\3.\,xlnx=0\\4.\,ln(x-1)-ln(3x+4)=ln(5x)\\5.\,(lnx)^2+lnx-2=0
Exercice 12 – Résoudre des équations logarithmiques
1.\,lnx=3\\2.\,ln(3x)=0\\3.\,ln(2x-1)=3\\4.\,ln ( \frac{1}{x-1} )=1\\5.\,ln(x^2)=4
Exercice 13 – Simplifier des logarithmes népériens
Simplifier :
a=ln(e^5)\\b=ln(e^2\sqrt{e})\\c=ln ( \frac{\sqrt{e}}{4}  )\\d=ln ( \frac{1}{e^2}  )^3\\e=\frac{1}{3}lne^{27}
Exercice 14 – Exprimer en fonction de ln 2 et ln 3

 a=ln18\\b=ln\frac{1}{8}\\c=ln(\frac{\sqrt{3}}{2})\\d=ln(2e^3)\\e=4ln(\sqrt{6})-6ln(12)
Exercice 15 -Logarithme népérien (ln)
Résoudre les équations et inéquations suivantes :

  • ln(3-5x)=0
  • 2ln(x-4)=lnx-2ln2
  • ln(x+4)+ln(x+1)=ln6
  • ln(\,|x+4\,\,|)+ln(\,|x+1\,\,|)=ln6
  • ln^3x+2ln^2x-lnx-2=0
  • ln\,(\,\frac{2x-3}{5x+1}\,\,)<0
  • lnx-\frac{1}{lnx}<\frac{3}{2}

Exercice 16 -Prise d’initiative et nombres complexes
Lequel de ces deux nombres est le plus grand ?
e^{\pi} ou  \pi^{e}
Indication : on peut faire une conjecture à la calculatrice mais on donnera une vraie démonstration.
Exercice 17 -Signe d’une fonction
soit g définie sur ]0;+infini[ par g(x)= 2x²+1-ln(x)
quel est le signe de g pour x>0?.
Exercice 18 -Dérivée
Soit g la fonction définie sur ]0;+[ par: g(x) = 1-x2– ln(x)
1.calculer la dérivée de la fonction g et étudier son signe. En déduire les variations de la fonction g
2. Calculer g(1). En déduire le signe de g(x) pour x appartenant à l’intervalle ]0;++\infty[ .
Exercice 19 -Logarithme népérien et simplifications
1) simplifier \frac{lne}{ln e^2-ln(\frac{1}{e})}
2) Déterminer le plus petit entier n tel que 1,05n1,5
3) Chaque année, la population d’une ville diminue de 3%. Au bout de combien d’année, la population de cette ville aura-t-elle diminué de plus de 30%
Exercice 20 – Bac et logarithmes
Partie A :
Soit g la fonction définie pour tout nombre réel x de l’intervalle ]0;+\infty[ par g(x)=x-xlnx.
1.Déterminer les limites de la fonction g en 0 et +\infty.
2.Montrer que g est dérivable sur l’intervalle ]0;+\infty[ et que g'(x)=-lnx.
3.Dresser le tableau de variations de la fonction g.
Partie B :
soit (u_n) la suite définie pour tout n\in\mathbb{N}^* par u_n=\frac{e^n}{n^n}.
1.Conjecturer, à l’aide de la calculatrice ;
a. le sens de variation de la suite(u_n) ;
b. la limite éventuelle de la suite (u_n).
2.Soit (v_n) la suite définie pour tout n\in\mathbb{N}^* par v_n=ln(u_n).
a.Montrer que v_n=n-nln(n).
b.En utilisant la partie A, déterminer le sens de variation de la suite (v_n).
3.Montrer que la suite (u_n) est bornée.
4.Montrer que la suite (u_n) est convergente et déterminer sa limite.
Exercice 21 – comparaison entre x^2 et 2^x
Soit f la fonction définie sur ]0;+\infty[ par f(x)=ln(2^x)-ln(x^2).
1. Démontrer que f(x)=xln2-2lnx.
2. Calculer f(2) et f(4).
3. Calculer la dérivée f ‘ de f.En déduire les variations de f.
4. A l’aide des questions 2 et 3, préciser le signe de f.
5. Déterminer l’ensemble des entiers n pour lesquels on a 2^n\geq\,\,n^2.

Corrigé de ces exercices sur les logarithmes


Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «logarithmes : exercices Maths Terminale corrigés en PDF» au format PDF.



Télécharger nos applications gratuites avec tous les cours,exercices corrigés Application Mathovore sur Google Play Store. Application Mathovore sur Apple Store.

.

Les dernières fiches mises à jour

Voici les dernières ressources mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

Des cours et exercices corrigés en terminale en vidéos


D'autres documents similaires Retrouvez nos cours de maths et exercices corrigés sur notre chaîne YouTube.

Inscription gratuite à Mathovore.  Mathovore c'est 1 790 163 cours et exercices de maths téléchargés en PDF et 157 073 membres.
Rejoignez-nous : inscription gratuite.

vidéos maths youtube
Mathovore

GRATUIT
VOIR