Dérivée d’une fonction : exercices de maths en terminale corrigés en PDF.

Aidez-nous à améliorer cette page en signalant une erreur Signaler une erreur Aidez-nous à améliorer cette page en signalant une erreur
La dérivée d’une fonction à travers des exercices de maths en terminale corrigés.Tous ces énoncés disposent d’une correction détaillée et peuvent être imprimés au format PDF.

Exercice 1 – Etude de fonctions numériques

Etudier la fonction f définie sur  D

a.  f(x)=-5x^2+10x+4\,\,D=\mathbb{R}\,\,.
b.  f(x)=\frac{3x+2}{x-5}\,\,D=\mathbb{R}\{5}\,\,.
c.  f(x)=\frac{-7}{x+2}\,\,D=\mathbb{R}\{-2}\,\,.
d.  f(x)=\sqrt{-2x+5}\,\,D=]-\infty\,;\,\frac{5}{2}]\,\,.
e.  f(x)=\,tan(4x)\,\,D=]\frac{-\pi}{8}\,;\,\frac{\pi}{8}[\,\,.

Exercice 2 :

La fonction  f est dérivable sur  \mathbb{R}, strictement croissante sur ] -\infty ; -1] et sur [0 ;  +\infty [ et strictement décroissante sur [-1;0].
De plus,  f(-3)=0,\,\,f(-1)=3\,\,f(0)=1\,.
Déterminer le nombre de solutions de l’équation  f(x)=1\,.

Exercice 3 :

Etudier la fonction f définie sur  D .

a.  f(x)=-\frac{1}{2}x^2+2x+1\,\,D=\mathbb{R}\,\,.
b.  f(x)=-\frac{3x+1}{x^2-x+1}\,\,D=\mathbb{R}\,\,.
b.  f(x)=(1-sin x)sinx\,\,D=\mathbb{R}\,\,.

Exercice 4 :

Pour chacune des fonctions f suivantes :
• Indiquer l’ensemble de dérivabilité de la fonction .
• ,Calculer sa dérivée .

a.  f(x)=(x^2-5)^4 .

b.  f(x)=\sqrt{x^2+5x-6} .

c.  f(x)=\frac{1}{\sqrt{1+x^2}} .

d.  f(x)=(3x+6)^{-2} .

e.  f(x)=\sqrt{3+cos^2 x} .

f.  f(x)=sin(3x).cos(2x) .

g.  f(x)=\frac{sin(3x)}{x} .

h.  f(x)=\frac{x+3}{x^2-4} .

Exercice 5 :

Pour tout entier naturel n, on considère la fonction  f_n définie sur  ]-1;+\infty[ par :

• pour n=0,  f_0(x)=\frac{1}{\sqrt{1+x^3}

• pour  n\ge 1\,,\,f_n(x)=\frac{x^{3n}}{\sqrt{1+x^3}

On désignera par (Cn) la courbe représentative de  f_n dans un repère orthonormal  (O,\vec{i},\vec{j}) ayant comme unité graphique 4 cm.

1. Déterminer les limites de  f_0 aux bornes de son ensemble de définition.
Etudier le sens de variation de  f_0 et construire  C_0 dans le repère  (O,\vec{i},\vec{j}) .

2. Soit n un entier naturel non nul.
a.  f'_n désignantla fonction dérivée de  f_n , montrer que :

 f'_n=\frac{x^{3n-1}[(6n-3)x^3+6n]}{2(1+x^3)(\sqrt{1+x^3})}

b. Etudier le sens de variation des fonctions  f_1 et  f_2 puis dresser leur tableau de variation .

c. Tracer  C_1 et  C_2 dans le repère  (O,\vec{i},\vec{j}).

Exercice 6 – Un exemple de fonction dérivable à dérivée non continue

Considérons la fonction f définie sur \mathbb{R} par :

f(x)=x^2sin(\frac{1}{x}),\,x\neq0 et f(0)=0.

Montrer que :

1. f est continue en 0.

2. f est dérivable en 0.

3. f ‘ n’est pas continue en 0.

Exercice 7 – Dérivation d’une composée de fonctions

Soit u une fonction dérivable sur un intervalle I.

Soit v une fonction dérivable sur un intervalle J contenant u(I).

Démontrer que la fonction vou est dérivable sur I et que pour tout x de I :

(vou)'(x)=u'(x)v'[u(x)].

Exercice 8 – Dérivabilité des fonctions sinus et cosinus sur \mathbb{R}

Démontrer que les fonctions sinus et cosinus sont dérivables sur \mathbb{R} et préciser leur fonction dérivée.

On rappelle que : \lim_{h\to,0}\frac{cos(h)-1}{h}=0 et \lim_{h\to,0}\frac{sin(h)}{h}=0.

Exercice 9 – Les fonctions bijectives

Soit f la fonction définie sur \mathbb{R} par : f(x)=\frac{x}{1+,|x,,|}.

1.Démontrer que f est bornée sur \mathbb{R}.

2.Etudier la parité de f.

3.Etudier la dérivabilité de f en 0.

4.Démontrer que f définit une bijection de \mathbb{R} sur ]-1;1[.

Exercice 10 – Accroissement moyen

1.On se propose d’étudier la limite en \frac{\pi}{2} de la fonction f définie par : f(x)=\frac{cos(x)}{x-\frac{\pi}{2}} avec x\neq\frac{\pi}{2}.

Vérifier que l’on est en présence d’une forme indéterminée.

En considérant l’accroissement moyen de la fonction cosinus en \frac{\pi}{2}, déterminer la limite ci-dessus.

2.Par une méthode analogue, étudier la limite de f en a dans les cas suivants :

f(x)=\frac{\sqrt{1+x}-1}{x}\,en\,a=0

f(x)=\frac{tan{x}-1}{x-\frac{\pi}{4}}\,en\,a=\frac{\pi}{4}

Voir Exercices 11 à 20...
Voir Exercices 21 à 30...

Corrigé des exercices de maths.

Aidez-nous à améliorer cette page en signalant une erreur Signaler une erreur Aidez-nous à améliorer cette page en signalant une erreur

Télécharger et imprimer ce document en PDF gratuitement :

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «dérivée d'une fonction : exercices de maths en terminale corrigés en PDF.» au format PDF.

Vous devez vous inscrire ou vous connecter à votre compte afin de pouvoir télécharger ce document au format PDF.

Réviser les leçons et les exercices avec nos Q.C.M :


D'autres utilitaires pour progresser en autonomie :


Inscription gratuite à Mathovore.  Mathovore c'est 14 099 023 cours et exercices de maths téléchargés en PDF.

Mathovore

GRATUIT
VOIR