cours maths terminale

Cours sur la dérivée et dérivation d’une fonction : cours de maths en terminale S

Cours sur la notion de dérivée et dérivation d’une fonction numérique.

I.La notion de dérivée d’une fonction

1.Dérivabilité et fonction dérivée

Définition : le nombre dérivé

On considère une fonction f définie sur un intervalle I de \mathbb{R} ainsi que deux nombres réels a et h tel quea et a+h appartiennent à I.

La fonction f est dérivable en a si et seulement si \lim_{h\,\to\,0}\frac{f(a+h)-f(a))}{h}=l  avec l\in\,\mathbb{R}.

Si c’est le cas, le réel l est appelé le nombre dérivée de f en a et se note f'(a).

Définition :

On considère une fonction f définie sur un intervalle I de \mathbb{R} .La fonction f est dérivable sur I si elle est dérivable en tout x de I.

La fonction f':x\,\mapsto  \,f'(x) définie sur I est appelée la fonction dérivée de f sur l’intervalle I.

2.Applications à la dérivation

Propriété : tangente en un point à la courbe.

On considère une fonction f dérivable en a et C_f sa courbe dans un repère orthonormé du plan.Une équation de la tangente à la courbe C_f au point d’abscisse a est :

y=f'(a)(x-a)+f(a).

Propriété : passage du signe de f'(x) aux variations de f.

On considère une fonction f définie et dérivable sur un intervalle I de \mathbb{R}.

  • Si f' est strictement positive sur I alors f est strictement croissante sur I;
  • Si f' est strictement négative sur I alors f est strictement décroissante sur I;
  • Si f' est nulle sur I alors f est constante sur I.

dérivée fonction

Propriété : extremums locaux d’une fonction.

On considère une fonction f définie et dérivable sur un intervalle I de \mathbb{R} et a\in\,I.Si f admet un extremum local en a alors f'(a)=0.

Si f' s’annule et change de signe en a alors f admet un extremum local en a.

extremum

3.Calculs de dérivées

Propriétés : dérivée des fonction usuelles.

On note D_f le domaine de définition de la fonction f.Toutes les fonctions du tableau ci-dessous sont dérivables sur D_f à l’exception de la fonction racine carrée qui n’est pas dérivable en 0.

Propriétés : opérations sur les fonctions dérivées.

On considère un nombre réel k et deux fonctions u et v dérivables sur un intervalle I.Les fonction u+v, ku et uv sont dérivables sur I;

Les fonctions \frac{1}{u} et \frac{1}{v} sont dérivables sur I sauf là où v s’annule.

II.Dérivées des fonctions composées

Propriété :
  • Si la fonction u est dérivable et strictement positive sur I alors \sqrt{u} est dérivable sur I.
  • Si c’est le cas, nous avons : (\sqrt{u})'=\frac{u'}{2\sqrt{u}}.
Propriété :

Soit n un entier naturel non nul.Si u est dérivable sur I alors :

  • La fonction u^n est dérivable sur I et (u^n)'=nu^{n-1}u'.
  • La fonction u^{-n} est dérivable sur I sauf là où u s’annule et (u^{-n})'=-nu^{-n-1}u'.
Propriété :

On considère deux nombres réels a et b.Si u est dérivable sur I alors :

La fonction f:x\,\mapsto  \,u(ax+b) est dérivable là où (ax+b)\in\,I.

Si c’est le cas , f'(x)=au'(ax+b).

Propriété :

Soit u une fonction dérivable sur I et f une fonction dérivable sur un intervalle J telle que  :Pour tout x\in\,I,\,u(x)\in\,J.

La fonction fou composée de u suivie de f  est dérivable sur I, et pour tout x\in\,I :

(fou)'(x)=u'(x)\times  \,(f'ou)(x) ou encore [f(u(x))]'=u'(x)\times  \,f'(u(x)).


Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «cours sur la dérivée et dérivation d'une fonction : cours de maths en terminale S» au format PDF.



Télécharger nos applications gratuites avec tous les cours,exercices corrigés Application Mathovore sur Google Play Store. Application Mathovore sur Apple Store.

.

D'autres fiches similaires à cours sur la dérivée et dérivation d'une fonction : cours de maths en terminale S.

Mathovore vous permet de réviser en ligne et de progresser en mathématiques tout au long de l'année scolaire.
De nombreuses ressources destinées aux élèves désireux de combler leurs lacunes en maths et d'envisager une progression constante. Tous les cours en primaire, au collège, au lycée mais également, en maths supérieures et spéciales ainsi qu'en licence sont disponibles sur notre sites web de mathématiques.
Des documents similaires à cours sur la dérivée et dérivation d'une fonction : cours de maths en terminale S à télécharger ou à imprimer gratuitement en PDF avec tous les cours de maths du collège au lycée et post bac rédigés par des enseignants de l'éducation nationale.
Vérifiez si vous avez acquis le contenu des différentes leçons (définition, propriétés, téhorèmpe) en vous exerçant sur des milliers d'exercices de maths disponibles sur Mathovore et chacun de ces exercices dispose de son corrigé.
En complément des cours et exercices sur le thème cours sur la dérivée et dérivation d'une fonction : cours de maths en terminale S, les élèves de troisième pourront réviser le brevet de maths en ligne ainsi que pour les élèves de terminale pourront s'exercer sur les sujets corrigé du baccalauréat de maths en ligne.

Les dernières fiches mises à jour

Voici les dernières ressources mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

Retrouvez nos cours de maths et exercices corrigés sur notre chaîne YouTube.

Inscription gratuite à Mathovore.  Mathovore c'est 2 006 337 cours et exercices de maths téléchargés en PDF et 167 981 membres.
Rejoignez-nous : inscription gratuite.

videos maths youtube
Mathovore

GRATUIT
VOIR