Sommaire de cette fiche
I. Divisibilité :
Soient a et b deux entiers relatifs non nuls.
On dit que b divise a ou que a est divisible par b ou bien encore que a est un multiple de b
on note alors b/a .
Exemple :
donc 5 divise 15, 3 divise 15, 15 est un multiple de 5 et de 3.
II. Propriétés :
Soient .
III. Définition :
Un entier est dit premier s’il n’admet dans
aucun autre diviseur que lui-même et 1 .
Ensemble des nombres premiers
L’ensemble des nombres premiers, noté est un ensemble infini.
.
IV. Théorème fondamental de l’arithmétique :
1. Décomposition en facteurs premiers :
Soit .
L’entier n se décompose de manière unique, à l’ordre près, sous forme de produit de nombres premiers.
.
2. Division euclidienne :
Remarque :
Que l’on soit dans ou
, le reste r est toujours positif ou nul.
3. Congruences :
Exemple :
18=5×3+3 et 27=8×3+3.
18 et 27 ont le même reste (r=3) lors de la division euclidienne par 3
donc
4. Plus commun diviseur (pgcd) et plus petit commun multiple (ppcm) :
a. Definition du pgcd(a,b)
On note aussi a^b.
b. Propriétés du pgcd(a,b)
Soit k un entier non nul.
Si k divise a et b alors :
Remarque :
On peut déterminer le pgcd(a,b) de trois manières :
- par décomposition des deux nombres ;
- par une succession de divisions euclidiennes, le dernier reste non nul étant le pgcd(a,b) (théorème d’Euclide);
- par le théorème de Bézout (voir plus loin….)
c. Définition du ppcm(a,b)
Soient a et b deux entiers relatifs.
L’ensemble des multiples communs à a et b admet un plus petit élément nommé le ppcm(a,b).
On note aussi : a v b .
Soient
V. Théorème de Bézout :
Soit d= pgcd(a,b) alors il existe deux entiers relatifs u et v tels que :
Deux nombres entiers a et b sont premiers entre eux si et seulement si pgcd(a,b)=1 .
VI. Théorème de Gauss:
Si a divise bc et a premier avec b alors a divise c
Exemple :
5 divise 70=7×10
or 5 est premier avec 7
donc d’après le théorème de Gauss 5 divise 10.
Télécharger et imprimer ce document en PDF gratuitement
Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «arithmétique : cours de maths en terminale S spécialité» au format PDF.
D'autres fiches similaires à arithmétique : cours de maths en terminale S spécialité.
Mathovore vous permet de réviser en ligne et de progresser en mathématiques tout au long de l'année scolaire.De nombreuses ressources destinées aux élèves désireux de combler leurs lacunes en maths et d'envisager une progression constante. Tous les cours en primaire, au collège, au lycée mais également, en maths supérieures et spéciales ainsi qu'en licence sont disponibles sur notre sites web de mathématiques.
Des documents similaires à arithmétique : cours de maths en terminale S spécialité à télécharger ou à imprimer gratuitement en PDF avec tous les cours de maths du collège au lycée et post bac rédigés par des enseignants de l'éducation nationale.
Vérifiez si vous avez acquis le contenu des différentes leçons (définition, propriétés, téhorèmpe) en vous exerçant sur des milliers d'exercices de maths disponibles sur Mathovore et chacun de ces exercices dispose de son corrigé.
En complément des cours et exercices sur le thème arithmétique : cours de maths en terminale S spécialité, les élèves de troisième pourront réviser le brevet de maths en ligne ainsi que pour les élèves de terminale pourront s'exercer sur les sujets corrigé du baccalauréat de maths en ligne.
- 92
- 92
- 91
- 89
- 88
Les dernières fiches mises à jour
Voici les dernières ressources mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.
- Anneaux olympiques avec scratch
- Calcul de la hauteur d’une cathédrale : trigonométrie avec Scratch.
- Jeu vidéo Sonic et boules de feu
- Construction du triangle de Sierpinski avec scratch
- Quizz sur les nombres relatifs avec scratch
- Table de multiplication en ligne avec scratch
- Brevet Maths 2021 – Asie Pacifique – Sujet et corrigé en PDF
- Composition d’une musique de piano de Yiruma (River flows in you)
- Pavage avec des octogones et carrés avec Scratch
- Conseils pour réussir son brevet de maths 2017
Rejoignez-nous :
inscription gratuite.