Exercices maths terminale S et ES

La récurrence : exercices Maths Terminale corrigés en PDF

Des exercices de maths sur le raisonnement par récurrence en terminale S portant sur l’initialisation et l’hérédité d’une propriété que l’on considère vraie au rang n et que l’on démontre qu’elle reste vraie au rang n+1.Ces exercices sont entièrement corrigés avec les réponses qui sont détaillées et les fichiers peuvent être téléchargés gratuitement au format PDF.

Exercice n° 1 :

Soit  (U_n) \, la suite définie par

 \{{U_0=2\atop \forall n \in\,\mathbb{N}\,\,U_{n+1}=\sqrt{U_n+2}} \,.

Démontrer par récurrence que :

 \fbox{\forall n \in\,\mathbb{N}\,,\,U_n\le2 }\,

Exercice n° 2 :

Soit  (U_n) \,. la suite définie par

 \{{U_0=2\atop \forall n \in\,\mathbb{N}\,,\,U_{n+1}=2U_n-3} \,.

Démontrer par récurrence que :

 \fbox{\forall n \in\,\mathbb{N}\,,\,U_n=3-2^n }\,.

Exercice n° 3 :

On pose :

 \forall n \in\,\mathbb{N^*}\,,\,S_n=1^2+2^2+3^2+....+n^2=\sum_{k=1}^n k^2 \,.

a. Calculer  S_1\,S_2\,,S_3\,,S_4 \,.

b. Exprimer  S_{n+1} en fonction de  S_n .

c. Démontrer par récurrence que :

 \fbox{ \forall n \in\,\mathbb{N^*}\,\,S_n=\frac{n(n+1)(2n+1)}{6} }\,.

Corrigé de cet exercice

Démonstration avec deux variables

On note x et y deux réels .

1. Démontrer que pour tout n\in \mathbb{N} alors x^{n+1}-y^{n+1}=y(x^n-y^n)+(x-y)x^n .

2. Exprimer x^ky^{n-k}  en fonction de x , si k = n .

3. Démontrer par récurrence que pour tout n\in \mathbb{N}^*  alors x^n-y^n=(x-y)\sum_{k=0}^{n-1}x^ky^{n-1-k} .

Corrigé de cet exercice

Raisonnement et démonstration de propriétés

Démontrer les propriétés ci-dessous :

1. Si a\in \mathbb{Q} et x\notin \mathbb{Q} alors a+x\notin \mathbb{Q}.

2. Si a\in \mathbb{Q}^* et x\notin \mathbb{Q} alors a\times   x\notin \mathbb{Q}.

Corrigé de cet exercice

Démontrer par récurrence une somme

On note x un réel différent de 1.

Démontrer par récurrence que pour tout n\in \mathbb{N} , \sum_{k=0}^{n}x^k=\frac{1-x^{n+1}}{1-x} .

Corrigé de cet exercice

Calcul d’une somme

Démontrer par récurrence que pour tout n\in \mathbb{N}^* , 

on a \sum_{k=1}^{n}(-1)^kk=\frac{(-1)^n(2n+1)-1}{4} .

Corrigé de cet exercice

Raisonnement par récurrence et puissance

On note x un réel positif .

Démontrer par récurrence que pour tout entier n\in \mathbb{N} , on a  (1+x)^n\geq\, 1+nx .

Corrigé de cet exercice

Raisonnement par contraposée

On note n\in \mathbb{N}^* .

Le but de cet exercice est de montrer par contraposée la propriété suivante :

   Si l’entier n^2-1 n’est pas divisible par 8 alors l’entier n est pair .

1. Ecrire la contraposée de la proposition précédente .

2. En remarquant qu’un entier impair n s’écrit sous la forme n=4k+r

avec k \in \mathbb{N} et r \in  \{1,2,3  \} ( à justifier).Prouver la contraposée .

3. Que peut-on en déduire ?

Corrigé de cet exercice

Somme des cubes

1. Montrer que \forall n\in \mathbb{N}^*\,,\sum_{k=1}^{n}k^3=\frac{n^2(n+1)^2}{4} .

2. En déduire la valeur de A=1^3+2^3+3^3+4^3+...+10^3

Corrigé de cet exercice

Multiples

Montrer que, pour tout entier n\geq\, 0n^3-n est un multiple de 3 .

Corrigé de cet exercice

Montrer que c’est un multiple

1. Développer, réduire et ordonner (n+1)^5.

2. En déduire que pour tout entier n\geq\, 0 , n^5-n est un multiple de 5 .

Corrigé de cet exercice

Démonstration par récurrence

Démontrer par récurrence que, pour tout entier naturel non nul n,on a :

\sum_{k=1}^{n}k^3=\,(\,\sum_{k=1}^{n}\,k\,)^2.

Rappel : \sum_{k=1}^{n}k=\frac{n(n+1)}{2}

Corrigé de cet exercice


Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «la récurrence : exercices Maths Terminale corrigés en PDF» au format PDF.



Télécharger nos applications gratuites avec tous les cours,exercices corrigés Application Mathovore sur Google Play Store. Application Mathovore sur Apple Store.

.

Les dernières fiches mises à jour

Voici les dernières ressources mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

Des cours et exercices corrigés en terminale en vidéos

Les fiches de cours et exercices de maths les plus consultées Concours : gagnez une calculatrice TEXAS INSTRUMENT (TI)

Nouveau concours avec une calculatrice Texas Instrument à gagner.
Le tirage au sort sera effectué avec un logiciel de manière aléatoire chaque début de mois et les résultats seront annoncés sur notre page facebook.
Les gagnants seront tirés au sort parmi les bonnes réponses de nos abonnés de notre nouvelle chaîne Youtube.


je participe au tirage au sort en m'abonnant à la chaîne YouTube Je participe au concours afin de gagner la calculatrice.

D'autres documents similaires

Inscription gratuite à Mathovore.  Mathovore c'est 1 603 571 cours et exercices de maths téléchargés en PDF et 149 002 membres.
Rejoignez-nous : inscription gratuite.

Mathovore

GRATUIT
VOIR