Cours maths terminale

La fonction logarithme népérien : cours de maths en terminale S

La fonction logarithme népérien avec un cours de maths en terminale S faisant intervenir la définition du logarithme et ses propriétés en terminale S.

I. Définition de la fonction logarithme népérien :

Définition :
Pour tout réel x de ]0;+\infty[, il existe un unique réel y tel que e^y=x.
Définition :

La fonction logarithme népérien, notée ln, est la fonction définie sur ]0 ; +\infty[ qui à tout réel x>0, associe le réel noté ln(x) dont l’exponentielle est  x.

Remarque :

L’image d’un réel strictement positif x par la fonction ln se note souvent ln x au lieu de ln(x).

Conséquences :

1. Pour tout réel x>0 et tout réel y, x=e^y équivaut à y=lnx.

2. Pour tout réel x>0, e^{lnx}=x.

3. Pour tout réel x, ln(e^x)=x

Démonstration :

(1) et (2) se déduisent directement de la définition.

(3) Pour tout réel x, si y=ln(e^x) alors d’après (1)  e^x=e^y donc x=y.

Conséquences :

ln1=0.En effet e^0=1 et d’après (1) ceci équivaut à ln1=0.

lne=1.En effet e^1=e et d’après (1) ceci équivaut à lne=1.

Pour tout réel \lambda, l’équation lnx=\lambda a pour unique solution x=e^{ \lambda } d’après (1).

Propriété:

Dans un repère orthonormal, les courbes représentatives des fonctions exponentielles et logarithmes népérien sont symétriques par rapport à la droite d’équation y=x.

Démonstration :

ON note \varphi et \varphi ^'  les courbes représentatives des fonctions exp et ln.

Dire que M'(x;y) appartient à \varphi ^'  équivaut à dire que M(y;x)  appartient à \varphi.

\varphi et \varphi ^' sont donc symétriques par rapport à la droite y=x.

II. Sens de variation de la fonction logarithme népérien sur ]0;+\infty[ :

Propriété :

La fonction logarithme népérien est strictement croissante sur ]0;+\infty[.

Démonstration :

a et b sont deux réels tels que 0<a<b, c’est à dire que e^{lna}<e^{lnb}.

La fonction exponentielle est strictement croissante sur \mathbb{R} donc lna<lnb.

Conséquences :

Pour tous réels a et b de ]0;+\infty[:

  •  lna=lnb équivaut à a=b et lna<lnb équivaut à a<b.
  •  lna>0 équivaut à a>1 et lna<0 équivaut à 0<a<1 .

III. Les propriétés algébriques :

1. Relation fonctionnelle :

Théorème :

Pour tout réels a et b de ]0;+\infty[ln(ab)=lna+lnb.

Démonstration :

a et b sont deux réels strictement positifs.On note A=lnab et B=ln a + ln b alors

e^A=ab et e^B=e^{lna+lnb}=e^{lna}\times e^{lnb}=ab

donc e^A=e^B d’où A=B puisque la fonction exponentielle est bijective sur \mathbb{R}.

2. Logarithme d’un quotient :

Propriété :

Pour tout réel a de ]0;+\infty[ln ( \frac{1}{a} )=-lna.

Démonstration :

Pour a>0, on écrit a\times \frac{1}{a}=1 donc ln(a\times \frac{1}{a})=ln1

c’est à dire ln(a)+ln(\frac{1}{a})=0 d’où ln(\frac{1}{a})=-ln(a).

Propriété :

Pour tous réels a et b de ]0;+\infty[ln(\frac{a}{b})=ln(a)-ln(b).

Démonstration :

Pour a>0 et b>0, ln(\frac{a}{b})=ln(a\times \frac{1}{b})=lna+ln\frac{1}{b}=ln(a)-ln(b).

3. Logarithme d’un produit de nombres réels strictement positifs :

Propriété :

Pour tous réels a_1,a_2,a_3,....,a_n de ]0;+\infty[,

ln(a_1a_2a_3....a_n)=lna_1+lna_2+lna_3+....+lna_n

Remarque :

Cette formule généralise la relation fonctionnelle établie dans le paragraphe 1. et peut se démontrer par récurrence.

Propriété :

Pour tout réel a de ]0;+\infty[ et tout entier relatif n, ln(a^n)=nlna.

Démonstration :

La démonstration de cette propriété se fait par récurrence et sur le signe de n.

4. Logarithme d’une racine carrée :

Propriété :

Pour tout réel a de ]0;+\infty[ln(\sqrt{a})=\frac{1}{2}lna.

Démonstration :

Pour a>0, (\sqrt{a})^2=a donc ln(\sqrt{a})^2=lna

ainsi 2ln(\sqrt{a})=lna

d’où ln(\sqrt{a})=\frac{1}{2}lna


Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «la fonction logarithme népérien : cours de maths en terminale S» au format PDF.




Les dernières fiches mises à jour

Voici les dernières ressources mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

Des cours et exercices expliqués en vidéos



Rejoignez-nous sur notre chaîne YouTube

Concours : gagnez une PS4 ou un Ipad Pro

Nouveau concours avec une console Playstation 4 (PS4 ) ou une tableatte Ipad Pro à gagner.
Le tirage au sort sera effectué avec un logiciel de manière aléatoire chaque début de mois et les résultats seront annoncés sur notre page facebook.
Les gagnants seront tirés au sort parmi les 1 000 premiers abonnés de notre nouvelle chaîne Youtube.


je participe au tirage au sort en m'abonnant à la chaîne YouTube Je participe au tirage au sort en m'abonnant à la chaîne YouTube.

Inscription gratuite à Mathovore.  Mathovore c'est 1 555 117 cours et exercices de maths téléchargés en PDF et 147 190 membres.
Rejoignez-nous : inscription gratuite.

Traduire »
Mathovore

GRATUIT
VOIR