cours maths terminale

La fonction logarithme népérien : cours en terminale.


La fonction logarithme népérien avec un cours de maths en terminale faisant intervenir la définition du logarithme et ses propriétés.

I. Définition de la fonction logarithme népérien :

Définition :
Pour tout réel x de ]0;+\infty[, il existe un unique réel y tel que e^y=x.
Définition :

La fonction logarithme népérien, notée ln, est la fonction définie sur ]0 ; +\infty[ qui à tout réel x>0, associe le réel noté ln(x) dont l’exponentielle est  x.

Remarque :

L’image d’un réel strictement positif x par la fonction ln se note souvent ln x au lieu de ln(x).

Conséquences :

1. Pour tout réel x>0 et tout réel y, x=e^y équivaut à y=lnx.

2. Pour tout réel x>0, e^{lnx}=x.

3. Pour tout réel x, ln(e^x)=x

Preuve :

(1) et (2) se déduisent directement de la définition.

(3) Pour tout réel x, si y=ln(e^x) alors d’après (1)  e^x=e^y donc x=y.

Conséquences :

ln1=0.En effet e^0=1 et d’après (1) ceci équivaut à ln1=0.

lne=1.En effet e^1=e et d’après (1) ceci équivaut à lne=1.

Pour tout réel \lambda, l’équation lnx=\lambda a pour unique solution x=e^{ \lambda } d’après (1).

Propriété:

Dans un repère orthonormal, les courbes représentatives des fonctions exponentielles et logarithmes népérien sont symétriques par rapport à la droite d’équation y=x.

Preuve :

ON note \varphi et \varphi ^'  les courbes représentatives des fonctions exp et ln.

Dire que M'(x;y) appartient à \varphi ^'  équivaut à dire que M(y;x)  appartient à \varphi.

\varphi et \varphi ^' sont donc symétriques par rapport à la droite y=x.

II. Sens de variation de la fonction logarithme népérien sur ]0;+\infty[ :

Propriété :

La fonction logarithme népérien est strictement croissante sur ]0;+\infty[.

Preuve :

a et b sont deux réels tels que 0<a<b, c’est à dire que e^{lna}<e^{lnb}.

La fonction exponentielle est strictement croissante sur \mathbb{R} donc lna<lnb.

Conséquences :

Pour tous réels a et b de ]0;+\infty[:

  •  lna=lnb équivaut à a=b et lna<lnb équivaut à a<b.
  •  lna>0 équivaut à a>1 et lna<0 équivaut à 0<a<1 .

III. Les propriétés algébriques :

1. Relation fonctionnelle :

Théorème :

Pour tout réels a et b de ]0;+\infty[ln(ab)=lna+lnb.

Preuve :

a et b sont deux réels strictement positifs.On note A=lnab et B=ln a + ln b alors

e^A=ab et e^B=e^{lna+lnb}=e^{lna}\times   e^{lnb}=ab

donc e^A=e^B d’où A=B puisque la fonction exponentielle est bijective sur \mathbb{R}.

2. Logarithme d’un quotient :

Propriété :

Pour tout réel a de ]0;+\infty[ln ( \frac{1}{a}  )=-lna.

Preuve :

Pour a>0, on écrit a\times   \frac{1}{a}=1 donc ln(a\times   \frac{1}{a})=ln1

c’est à dire ln(a)+ln(\frac{1}{a})=0 d’où ln(\frac{1}{a})=-ln(a).

Propriété :

Pour tous réels a et b de ]0;+\infty[ln(\frac{a}{b})=ln(a)-ln(b).

Preuve :

Pour a>0 et b>0, ln(\frac{a}{b})=ln(a\times   \frac{1}{b})=lna+ln\frac{1}{b}=ln(a)-ln(b).

3. Logarithme d’un produit de nombres réels strictement positifs :

Propriété :

Pour tous réels a_1,a_2,a_3,....,a_n de ]0;+\infty[,

ln(a_1a_2a_3....a_n)=lna_1+lna_2+lna_3+....+lna_n

Remarque :

Cette formule généralise la relation fonctionnelle établie dans le paragraphe 1. et peut se démontrer par récurrence.

Propriété :

Pour tout réel a de ]0;+\infty[ et tout entier relatif n, ln(a^n)=nlna.

Démonstration :

La démonstration de cette propriété se fait par récurrence et sur le signe de n.

4. Logarithme d’une racine carrée :

Propriété :

Pour tout réel a de ]0;+\infty[ln(\sqrt{a})=\frac{1}{2}lna.

Preuve :

Pour a>0, (\sqrt{a})^2=a donc ln(\sqrt{a})^2=lna

ainsi 2ln(\sqrt{a})=lna

d’où ln(\sqrt{a})=\frac{1}{2}lna

Vous avez assimilé ce cours sur la fonction logarithme népérien en terminale ?

Effectuez ce QCM sur les fonctions logarithmes en classe de terminale.

Les fonctions logarithmes

Un QCM sur les fonctions logarithmes

4.6/5 - (2405 votes)
Télécharger et imprimer ce document en PDF gratuitement :

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «la fonction logarithme népérien : cours en terminale.» au format PDF.

Vous devez vous inscrire ou vous connecter à votre compte afin de pouvoir télécharger ce document au format PDF.



Inscription gratuite à Mathovore.  Mathovore c'est 13 793 653 cours et exercices de maths téléchargés en PDF.