Cours maths terminale

Le produit scalaire : cours de maths en terminale S

Le produit scalaire dans le plan dans un cours de maths en terminale S et dans l’espace.
Cette leçon sur le produit scalaire est à télécharger en PDF gratuitement afin de progresser et développer vos compétences en classe de terminale S.

I. Différentes expressions du produit scalaire :

1. Vecteurs colinéaires :

Définition :

soient  \vec{u} et  \vec{v} deux vecteurs colinéaires non nuls, tels que

 \vec{u}=\vec{OA} et \vec{v}=\vec{OB}.

• Si  \vec{u} et \vec{v} sont de même sens :  \vec{u}.\vec{v}=OA\times OB .

• Si  \vec{u} et  \vec{u} sont de sens contraires :  \vec{u}.\vec{v}=OA\times OB.

• Si  \vec{u}=\vec{0} ou \vec{v}=\vec{0} alors \vec{u}.\vec{v}=0.

 \vec{u}.\vec{u}=||\vec{u}|| est le carré scalaire du vecteur  \vec{u}

cours maths

2. Vecteurs quelconques :

Propriété 1 :

Soient \vec{u} et \vec{v} deux vecteurs non nuls tels que

 \vec{u}=\vec{OA} et  \vec{v}=\vec{OB}.

Alors :

 \fbox{\vec{u}.\vec{v}=OA'\times OB=OA\times OB'} .

A’ et B’ sont respectivement les projetés orthogonaux de A sur (OB) et de B sur (OA).

cours maths

3. Propriétés :

Propriété 2 :

Soient (x;y) et (x’;y’) les coordonnées respectives des vecteurs  \vec{u} et  \vec{v} dans un repere orthonormé quelconque.
 \fbox{\vec{u}.\vec{v}\,=\,x.x'+y.y'} .

II. Produit scalaire et orthogonalité :

Définition :

Dire que  \vec{u} et  \vec{v} sont deux vecteurs orthogonaux signifie que :

• Soit  \vec{u}=\vec{0} ou  \vec{v}=\vec{0};

• Soit (OA)\perp(OB), avec  \vec{u}=\vec{OA} et  \vec{v}=\vec{OB} non nuls.

cours maths

2. Propriété :

Propriété :
 \fbox{\vec{u}\perp\vec{v}\,\,\Longleftrightarrow\,\,\vec{u}.\vec{v}=0} .

III. Propriétés du produit scalaire :

Propriétés :

Propriétés :

Soient ,\vec{u}\,,\,\vec{v},\,\vec{w} trois vecteurs et k un nombre réel.

\vec{u}.\vec{v}=\vec{v}.\vec{u} (symétrie).

(k\vec{u}).\vec{v}=\vec{u}.(k\vec{v})=k(\vec{u}.\vec{v}) (linéarité)

(\vec{u}+\vec{v}).\vec{w}=\vec{u}.\vec{w}+\vec{v}.\vec{w} (linéarité)

\vec{u}.(\vec{v}+\vec{w})=\vec{u}.\vec{v}+\vec{u}.\vec{w} (linéarité)

(\vec{u}+\vec{v})^2=\vec{u}^2+2\vec{u}.\vec{v}+\vec{v}^2 (identité remarquable)

(\vec{u}-\vec{v})^2=\vec{u}^2-2\vec{u}.\vec{v}+\vec{v}^2 (identité remarquable)

(\vec{u}-\vec{v})(\vec{u}+\vec{v})=\vec{u}^2-\vec{v}^2 (identité remarquable)

IV. Applications du produit scalaire :

1. produit scalaire et cosinus :

Propriété :

Soit  \vec{u} et  \vec{v} non nuls.

 \vec{u}.\vec{v}=||\vec{u}||\times ||\vec{v}||\times cos(\vec{u},\vec{v})

2. Théorème d’Al-Kashi :

Théorème :

Soit ABC un triangle tel que AB=c, AC=b et BC=a.

On a :

 a^2\,=\,b^2+c^2-2bc\times cosA

 b^2\,=\,a^2+c^2-2ac\times cosB

c^2\,=\,a^2+b^2-2ab\times cosC

cours maths

3. Théorème de la médiane :

Théorème :

Soient A et B deux points distincts et I le milieu du segment [AB] .

Pour tout point M, :

\fbox{ MA^2\,+MB^2\,=\,2MI^2\,+\,\frac{AB^2}{2}}

cours maths


Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «le produit scalaire : cours de maths en terminale S» au format PDF.




Les dernières fiches mises à jour

Voici les dernières ressources mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

Des cours et exercices expliqués en vidéos



Rejoignez-nous sur notre chaîne YouTube

Concours : gagnez une PS4 ou un Ipad Pro

Nouveau concours avec une console Playstation 4 (PS4 ) ou une tableatte Ipad Pro à gagner.
Le tirage au sort sera effectué avec un logiciel de manière aléatoire chaque début de mois et les résultats seront annoncés sur notre page facebook.
Les gagnants seront tirés au sort parmi les 1 000 premiers abonnés de notre nouvelle chaîne Youtube.


je participe au tirage au sort en m'abonnant à la chaîne YouTube Je participe au tirage au sort en m'abonnant à la chaîne YouTube.

Inscription gratuite à Mathovore.  Mathovore c'est 1 554 535 cours et exercices de maths téléchargés en PDF et 147 175 membres.
Rejoignez-nous : inscription gratuite.

Traduire »
Mathovore

GRATUIT
VOIR