Sommaire de cette fiche
I.Enoncé du théorème de Bézout :
Soient a et b sont deux entiers naturels non nuls.
Dire que a et b sont premiers entre eux équivaut à dire il existe deux entiers relatifs u et v tels que .
Démonstration :
1.Supposons qu’il existe deux entiers u et v tels que au + bv = 1 et prouvons que a et b sont premiers entre eux.
On note
divise a et b donc
divise au + bv.
Comme au + bv = 1, = 1 et a et b sont premiers entre eux.
2.Supposons que a et b premiers entre eux et démontrons que 1 s’écrit sous la forme au + bv.
Soit l’ensemble des nombres sous la forme au + bv avec
et
.
L’ensemble n’est pas vide car pour u = 1 et v = 0,
.Il en est de même pour b.
Ainsi contient des entiers strictement positive, et, parmi eux, un plus petit que tous les autres.
Notons ce plus petit élément.
La division euclidienne de a par m s’écrit avec
soit .
Ainsi .Or m est le plus petit entier strictement positif de
donc r = 0.
Ainsi m divise a.On montre de même que m divise b.
Comme a et b sont premiers entre eux, m=1 et .
En pratique, comment trouver u et v ?
Pour déterminer les coefficient, on utilise l’algorithme d’Euclide.
Donnons un exemple.
On cherche un couple (x;y) d’entiers relatifs tels que 89x+41y=1 (1).
89 et 41 sont premiers entre eux donc il existe deux entiers relatifs x et y vérifiant (1).
On pose a=89 et b=41.
donc
.
donc
.
donc
.
Soit .
Ainsi est solution de (1).
II.Une nouvelle caractérisation du PGCD
a et b sont deux entiers naturels non nuls.Dire que est le
équivaut à dire que
est un diviseur de a et b et il existe deux entiers relatifs u et v tels que
.
Cette publication est également disponible en :
English (Anglais)
Español (Espagnol)
العربية (Arabe)
Télécharger et imprimer ce document en PDF gratuitement
Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «le théorème de Bézout : cours de maths en terminale en PDF.» au format PDF.
D'autres fiches dans la section cours de maths en terminale S
- Le produit scalaire : cours de maths en terminale à télécharger en PDF.
- Nombres complexes : cours de maths en terminale en PDF.
- Matrices et opérations : cours de maths en terminale spécialité en PDF.
- Arithmétique : cours de maths en terminale spécialité.
- Les suites numériques : cours de maths en terminale en PDF.
- Les limites et les asymptotes : cours de maths en terminale.
- Les probabilités conditionnelles : cours de maths en terminale en PDF.
- La fonction logarithme népérien : cours de maths en terminale.
- Géométrie dans l’espace : cours de maths en terminale en PDF.
- Le raisonnement par récurrence : cours de maths en terminale en PDF.
D'autres fiches similaires à le théorème de Bézout : cours de maths en terminale en PDF..
- 92
L'arithmétique dans un cours de maths en terminale spécialité. Ce cours fait intervenir les notions de divisibilité, multiples, diviseurs, congruences, les nombres premiers et la décomposition en facteur premier d'un nombre entier. Egalement la division Euclidienne, le théorème de Bézout et le théorème de Gauss. I. Divisibilité. Définition : Soient…
- 92
Un cours d'arithmétique en terminale spécialité sur la divisibilité et les congruences.Dans cette leçon, nous aborderons la divisibilité dans et la division euclidienne dans et ainsi que les entiers congrus modulo n et les propriétés des congruences. I. Divisibilité et division euclidienne. 1.Divisibilité dans Z. Définition : a et b sont deux entiers…
- 91
Les dernières fiches mises à jour.
Voici les dernières ressources similaires à le théorème de Bézout : cours de maths en terminale en PDF. mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.