Le théorème de Bézout : cours de maths en terminale spécialité en PDF.
Mis à jour le 18 avril 2025
I.Enoncé du théorème de Bézout :
Soient a et b sont deux entiers naturels non nuls.
Dire que a et b sont premiers entre eux équivaut à dire il existe deux entiers relatifs u et v tels que .
Démonstration :
1.Supposons qu’il existe deux entiers u et v tels que au + bv = 1 et prouvons que a et b sont premiers entre eux.
On note
divise a et b donc
divise au + bv.
Comme au + bv = 1, = 1 et a et b sont premiers entre eux.
2.Supposons que a et b premiers entre eux et démontrons que 1 s’écrit sous la forme au + bv.
Soit l’ensemble des nombres sous la forme au + bv avec
et
.
L’ensemble n’est pas vide car pour u = 1 et v = 0,
.Il en est de même pour b.
Ainsi contient des entiers strictement positive, et, parmi eux, un plus petit que tous les autres.
Notons ce plus petit élément.
La division euclidienne de a par m s’écrit avec
soit .
Ainsi .Or m est le plus petit entier strictement positif de
donc r = 0.
Ainsi m divise a.On montre de même que m divise b.
Comme a et b sont premiers entre eux, m=1 et .
En pratique, comment trouver u et v ?
Pour déterminer les coefficient, on utilise l’algorithme d’Euclide.
Donnons un exemple.
On cherche un couple (x;y) d’entiers relatifs tels que 89x+41y=1 (1).
89 et 41 sont premiers entre eux donc il existe deux entiers relatifs x et y vérifiant (1).
On pose a=89 et b=41.
donc
.
donc
.
donc
.
Soit .
Ainsi est solution de (1).
II.Une nouvelle caractérisation du PGCD
a et b sont deux entiers naturels non nuls.Dire que est le
équivaut à dire que
est un diviseur de a et b et il existe deux entiers relatifs u et v tels que
.
Télécharger et imprimer ce document en PDF gratuitement :
Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «le théorème de Bézout : cours de maths en terminale spécialité en PDF.» au format PDF.
Ressources de terminale
Cours de terminale
Exercices de terminale
L'équipe Mathovore
12 Enseignants Titulaires
Collectif d'enseignants titulaires de l'Éducation Nationale, spécialisés en mathématiques en primaire, au collège, au lycée et post-bac.
Notre équipe collaborative enrichit constamment nos ressources pédagogiques.
Nos applications
Téléchargez gratuitement la dernière version de nos applications.