Exercices maths 3ème

Exercices sur les sections de solides et calculs de volumes série 1

Des exercices de maths en troisième (3ème) sur géométrie dans l’espace et section de solides avec des calculs de volumes.

Vous pouvez télécharger en PDF ces exercices afin de travailler à domicile après les avoir imprimés, la correction est détaillée pour le niveau troisième.

Volume et masse d’un lingot d’or

Un lingot d’or ayant la forme d’un parallélépipède rectangle et a les dimensions suivantes

– Longueur L = 7,5 cm ;
– largeur l = 3 cm ;
– hauteur h = 2,3 cm

On sait que la masse volumique de l’or est 19,3\,g/cm^3.

1. Calculer le volume de ce lingot d’or.
2. Calculer la masse de ce lingot d’or.
3. On décide de reproduire ce lingot en l’agrandissant à l’échelle 3.

Quel sera alors le volume de la maquette obtenue ? Justifier la réponse.

Corrigé de cet exercice

Réservoir d’eau

Un réservoir d’eau est formé d’une partie cylindrique et d’une partie conique.

1. Donner, en dm3, le volume exact de la partie cylindrique en utilisant le nombre\pi.

2. Donner, en dm3, le volume exact de la partie conique en utilisant le nombre \pi.

3. Donner le volume exact du réservoir, puis sa valeur arrondie à 1 dm3 près.

4. Ce réservoir peut-il contenir 1000 litres? Justifier la réponse.

Bloc de pierre et prisme droit à base trapézoïdale

D’un bloc de pierre ayant la forme d’un pavé droit ADEFIJKL,

un sculpteur veut extraire le prisme droit ABCDFGHE ayant pour base le trapèze isocèle ABCD.

On donne : AD = 40 cm  ;  AI = 15 cm  ;  AF = 20 cm  ;  IB = 5 cm.

1) a) Calculer l’aire du trapèze ABCD.

b) Calculer le volume du prisme ABCDFGHE.

2) Calculer AB (donner la valeur exacte).

3) Calculer tan(\widehat{BAI}).

En déduire la valeur arrondie de \widehat{BAI}  à un degré près.

Corrigé de cet exercice

Volume d’un ballon de basket et d’une balle de tennis

1. On admet qu’un ballon de basket est assimilable à une sphère de rayon R1 = 12,1 cm.

Calculer le volume V1, en cm3, de ce ballon; donner le résultat arrondi au cm3.

2. On admet qu’une balle de tennis est assimilable à une sphère de rayon R2, en cm.

La balle de tennis est ainsi une réduction du ballon de basket. Le coefficient de réduction est \frac{4}{15} .

a) Calculer R2 ; donner le résultat arrondi au mm.

b) Sans utiliser cette valeur de R2, calculer le volume V2, en cm3, d’une balle de tennis ; donner le résultat arrondi à l’unité.

Rappel : Volume d’une sphère de rayon R : V=\frac{4}{3}\pi\times   R^3

Corrigé de cet exercice

La série 3 des exercices sur les sections de solides et l’utilisation des formules pour le calcul du volume d’un solide en troisième (3ème).

Problème du pigeonnier

Un pigeonnier est composé d’un parallélépipède rectangle ABCDEFGH et d’une pyramide SEFGH dont la hauteur [SO] mesure 3,1 m.

On sait que AB = 3 m, BC = 3,5 m et AE = 4 m.

1.Calculer la longueur BD et en déduire celle de BH.

On donnera des valeurs approchées de ces résultats à 10^{-1} près.

2. Calculer en m^3 le volume V_1  de ce pigeonnier.

3. Un modéliste désire construire une maquette de ce pigeonnier à l’échelle \frac{1}{24}.

Calculer en dm^3 le volume V_2 de la maquette.

On donnera une valeur approchée de ce résultat à 10^{-3} près.

Corrigé de cet exercice

La pyramide du Louvre

La pyramide du Louvre est une pyramide régulière à base carrée de 35 m de côté, sa hauteur est 22 m.

1) Calculer l’aire de sa base.

2) Calculer la valeur exacte du volume V de cette pyramide.

Donner la valeur arrondie de V au mètre cube.

3) Dans un parc de loisirs, on construit une réduction de cette pyramide ; le côté de la base carrée mesure 7 m.

a) Calculer l’échelle de cette réduction.

b) Calculer la hauteur de la pyramide réduite.

c) Par quel nombre faut-il multiplier le volume V de la pyramide du Louvre pour obtenir le volume V’ de la pyramide réduite ?

Corrigé de cet exercice

Cornet de glace et quantité de glace

Un cornet de glace est formé par un cône de révolution de hauteur 10 cm et une demi-boule de rayon 3 cm.

le cône est rempli complétement de glace.

Calculer la quantité nécessaire de glace, en cL, nécessaire pour confectionner ce cornet.

Cornet de glace

Corrigé de cet exercice

Volume d’un cône de révolution et sections de solides

Le cône de révolution ci-dessous de sommet S a une hauteur [SO] de 9 cm et un rayon de base [OA] de 5 cm.

a. Calculer le volume V_1 de ce cône au  cm^3 près.

b. Soit M le point du segment [SO] tel que SM = 3 cm.

On coupe le cône par un plan parallèle à la base passant par M.

Calculer le rayon de cette section.

c. Calculer le volume V_2  du petit cône de sommet S ainsi obtenu au cm^3 près.

Volume d'un cône de révolution et section

Corrigé de cet exercice

Tajine et calcul du volume d’un cône

Une Tajine est un plat composé d’une assiette circulaire

et d’un couvercle en forme de cône qui s’emboîte parfaitement sur l’assiette .

L’assiete de ce tajine a un rayon [OA] qui mesure 15 cm et la géneratrice du cône [SA] mesure 25 cm .

1) Calculer la hauteur OS du cône .

2) Montrer que la valeur exacte du volume du cône est égale à 1500\pi\,cm^3 .

Corrigé de cet exercice

La série 2 des exercices sur les sections de solides pour le niveau troisième avec de nombreux exercices de maths entièrement corrigés et détaillés à imprimer au format PDF.

Volume d’un prisme droit

Calculer le volume de ce prisme droit sachant que :

ABC est rectangle et isocèle en B

et BA = BC = BF = 5 cm .

Corrigé de cet exercice

Calcul du volume d’un prisme droit

Calculer le volume du prisme droit sachant que :

ABC est rectangle en C et CB = 5 cm , CA = 4 cm et AD = 7 cm .

Corrigé de cet exercice

Calculer le volume d’une pyramide

Calculer le volume de cette pyramide sachant que :

ABCD est un carré de 8 cm et h = 11 cm .

Arrondir le résultat au mm² près.

Corrigé de cet exercice

Calcul du volume d’un cylindre

Calculer le volume du cylindre ci-dessous, sachant que  :

R= 3 cm et h = 5 cm (donner le résultat au mm² près).

Corrigé de cet exercice

Calculer le volume de ce cône de révolution

sachant que SO = 8 cm et OA = 6 cm (arrondir le résultat au mm² près).

Corrigé de cet exercice

La série 4 des exercices sur les sections de volumes en troisième (3ème).Ces exercices corrigés peuvent être imprimés ou téléchargés en PDF.

Volume d’un parallélépipède rectangle ou pavé droit

Calculer le volume du pavé droit (parallélépipède rectangle ) suivant :

Corrigé de cet exercice

Volume du tronc d’une pyramide

1/Le bac à fleurs ABCDEFGH est un tronc de pyramide qui a été formé en coupant la pyramide régulière SABCD par un plans parallèle a sa base.

ABCD et EFGH sont deux carrés de centres respectif O et M .

On donne:AB=70cm;EF=30cm et OM=60cm .

On note h la hauteur SO en cm .

a.Exprimer de deux facons différentes,SM en fonction de h.

b.En déduire une equation dont h est solution.

c.Résoudre cette équation afin de trouver la valeur de h.

d.Calculer le volume de ce bac a fleurs.

2/Voici comment le mathématicien hindou Bhaskara calculait le volume d’un tronc de pyramide au XII eme siecle:

La somme des aire des base et de l’aire d’un rectangle de largueur la somme des largueur des base et de longueurla somme des longueur des base,étant diviser par six puis multiplier par la profondeur donne le volume.

Appliquer cette methode pour calculer le volume du bac a fleur ci-dessus :

Corrigé de cet exercice

Volume d’un prisme

On donne: AB =6 m, AE = 5m, AD = 1.80m, BC = 0.80m .

Sur le schéma ci dessus, les dimensions ne sont pas respectées.

1. Montrer que le volume ce cette piscine est 39 m3 .

2. A la fin de l’été, M.Dujardin vide sa piscine à l’aide d’une pompe dont le débit est 5m3 par heure. Calculer le nombre de m3 restant dans la piscine au bout de 5 heures.

Corrigé de cet exercice

Géométrie dans l’espace

On a représenter ci-contre un réservoir parallélépipédique permettant de mesurer la hauteur d’eau tombée dans un jardin pendant une averse (voir ci-dessous)

1. On assimile les gouttes d’eau à des boules de diamètre 4mm.

Calculer le volume d’une goutte d’eau. Donner leur valeur exacte.

2. La hauteur d’eau tombée pendant cette averse est égale à 8cm.

Calculer le nombre de gouttes d’eau contenues dans le réservoir. On donnera la valeur approché par défaut.

Corrigé de cet exercice

Coefficient de réduction et pyramide

Une pyramide SABCD à base rectangulaire par un plan parallèle à base à 5 cm du sommet . AB=4,8cm ; BC=4,2cm et SH=8cm.

a. Calculer le coefficient de K de réduction entre les pyramides SABCD et SA’B’C’D’ .

b. Calculer le volume de la pyramide SABCD .

c. En déduire le volume de la pyramide SA’B’C’D’ .

Corrigé de cet exercice

La série 5 des exercices sur les sections de solides et le calcul de volumes.Ces exercices corrigés sont à télécharger en PDF ou à imprimer.

Volume et aire d’une boule

une boule de laiton mesure 10cm de diamètre.Le laiton est un alliage constitué de 40% de zinc est de 60% de cuivre.

1)Calculer le volume de cette boule.(arrondir a 1/10cm3 près)

2)On veut recouvrir cette boule de peinture dorée.

a)Calculer l’aire de la surface de la boule.Donner la valeur exacte.

b)De quelle quantité de peinture est nécessaire si 1dl recouvre 0.1m²?

3) la boule est sciée selon un plan situé à 3cm de son centre.

a)calculer le rayon du cercle de section,la longueur de ce cercle et l’aire du disque de section.Donner les valeurs exactes puis les valeurs arrondies au cm près et cm² près.

Corrigé de cet exercice

Coefficient de réduction

Sur la figure ci-dessous, on a un cône de révolution tel que SO = 12 cm.

Un plan parallèle à la base coupe ce cône tel que SO = 12 cm.

1. Le rayon du disque de base du grand cône est de 7 cm.

Calculer la valeur exacte du volume du grand cône.

2. Quel est le coefficient de réduction qui permet de passer du grand cône au petit cône ?

3. Calculer la valeur exacte du volume de ce petit cône, puis en donner la valeur arrondie au cm^3 .

Coefficient de réduction et calcul du volume d'un cône de révolution.

Corrigé de cet exercice

Volume d’une pyramide à base carrée

Sur la figure ci-dessous, SABCD est une pyramide à base carrée de hauteur [SA] telle que AB = 9 cm et SA = 12 cm.

Le triangle SAB est rectangle en A.

EFGH est la section de la pyramide SABCD par le plan parallèle à la base et telle que SE = 3 cm.

1.a. Calculer EF.

b. Calculer SB.

2.a. Calculer le volume de la pyramide SABCD.

b. Donner le coefficient de réduction permettant de passer de la pyramide SABCD à la pyramide SEFGH.

c. En déduire le volume de SEFGH.On donnera une valeur arrondie à l’unité.

Volume d'une pyramide à base carrée.

Corrigé de cet exercice

Volume d’une pyramide

Pour la pyramide SABCD ci-dessous, la base est le rectangle ABCD de centre O.

AB = 3 cm et BD = 5 cm.La hauteur [SO] mesure 6 cm.

1. Montrer que AD = 4 cm.

2. Calculer le volume de la pyramide SABCD en cm^3.

3. Soir O ‘ le milieu de [SO].On coupe la pyramide par un plan passant par O ‘ et parallèle à sa base.

a. Quelle est la nature de la section A’B’C’D’ obtenue ?

b. La pyramide SA’B’C’D’ est une réduction de la pyramide SABCD.

Donner le rapport de cette réduction.

c. Calculer le volume de la pyramide SA’B’C’D’.

Volume d'une pyramide

Corrigé de cet exercice

Volume d’un cône de révolution

Un cône de révolution a un disque de base de rayon 7 cm et une hauteur de 9 cm.
Calculer son volume au centimètre cube près.
Cône de révolution

Corrigé de cet exercice

La série 6 des exercices de maths en troisième (3ème) sur les sections de solides et le calcul de volumes.

Boîte de balles de tennis

Une boîte cylindrique contient 3 balles de tennis de rayon 3,4 cm.


a) Fais une figure,dans le cas où la boite a des dimensions minimales.
b) Quelles sont les dimensions minimales de cette boîtes(hauteur et rayon) ?
c) Calcule le volume de la boîte et le volume des trois balles.
d) Calcule le pourcentage de « vide » dans cette boîte contenant les 3 balles .

Corrigé de cet exercice

Volume d’un verre conique

Dans un verre conique de hauteur 8 cm et de rayon 6 cm,

je mets 3 boules de glace de rayon 3 cm chacune.

Je n’ai pas le temps de les manger!! trop de copies à corriger.

Les 3 boules fondent!!

La glace va t-elle déborder ?? si oui, combien de cL de glace ai-je perdu?

Corrigé de cet exercice

Spectacle de magie : le souci du magicien

Pour son spectacle, un magicien veut enfoncer des épées dans une boîte dans laquelle serait enfermé un spectateur.

La boîte est un cube de 1 m de côté.

Pour son projet, le magicien doit faire fabriquer des épées.

Il lui faut des épées toutes de même taille telles que, quel que soit l’endroit où il  enfonce l’épée, elle puisse dépasser d’au moins 10 cm.

Quelle longueur minimum de lame d’épée doit-il commander au forgeron ?

Petit « plus »: les épées conviendraient-elles pour une boîte en forme de pavé droit de dimensions (en mètre): 1,5 ; 0,5 et 0,8 ?

Corrigé de cet exercice

Cône de révolution et extrait du brevet

On considère un cône de révolution semblable à celui qui est représenté ci-dessous avec AO = 2 cm et BO = 3 cm.

1. Calculer la longueur de la génératrice [AB] et donner la valeur exacte en cm puis la valeur arrondie à l’unité.

2. Calculer le volume du cône et donner, en  cm^3 , la valeur exacte puis la valeur arrondie à l’unité.

Cône de révolution et extrait du brevet

Corrigé de cet exercice

Pavé droit et extrait du brevet

Corrigé de cet exercice

Pyramides au brevet de maths

Corrigé de cet exercice

La série 7 des exercices sur les sections de solides et le calcul de volumes en utilisant les différentes formules.Ces documents sont à télécharger en PDF et à imprimer librement.

Volume d’un pot de fleur

Un pot à fleurs a la forme d’un tronc de cône.

Ses deux disques de base ont 10 cm et 20 cm de rayon.

La distance entre leurs centres O et O’ est 30 cm.

Sur la figure (OA) et (O’A’) sont parallèles.

1.  Montrer que \frac{SO'}{SO}=\frac{1}{2}.

Montrer que SO = 60 cm.

2.  Calculer le volume du cône de sommet S et de base le disque de

centre O.

3. Calculer le volume du pot.

On ne demande pas de refaire une figure.

Corrigé de cet exercice

Volume et espace

ABCDEFGH est un pavé droit à base carrée. On donne AD = 3 cm et DC =2cm et CG = 4 cm.

1.Calculer le volume en cm3 de la pyramide de sommet G et de base ABCD.

2.Calculer DG.

3. On admet que le triangle ADG est rectangle en D.

Calculer la mesure, arrondie au degré, de l’angle AGD.

Calculer la valeur exacte de la longueur AG, puis en donner la valeur arrondie au millimètre.

Corrigé de cet exercice

Calculs de volumes

Un pigeonnier est composé d’un parallélépipède rectangle ABCDEFGH et d’une pyramide SEFGH dont la hauteur [SO] mesure 3,1 m.

On sait que AB = 3 m, BC = 3,5 m et AE = 4 m.

1.Calculer la longueur BD et en déduire celle de BH. On donnera des valeurs approchées de ces résultats à 10-1 près.

2. Calculer en m3 le volume V1  de ce pigeonnier.

3. Un modéliste désire construire une maquette de ce pigeonnier à l’échelle \frac{1}{24}.

Calculer en dm3 le volume V2 de la maquette.

On donnera une valeur approchée de ce résultat à 10-3 près.

Corrigé de cet exercice


Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «exercices sur les sections de solides et calculs de volumes série 1» au format PDF.



Télécharger nos applications gratuites avec tous les cours,exercices corrigés Application Mathovore sur Google Play Store. Application Mathovore sur Apple Store.

.

Les dernières fiches mises à jour

Voici les dernières ressources mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

Des cours et exercices corrigés en 3ème en vidéos

Les fiches de cours et exercices de maths les plus consultées Concours : gagnez une calculatrice TEXAS INSTRUMENT (TI)

Nouveau concours avec une calculatrice Texas Instrument à gagner.
Le tirage au sort sera effectué avec un logiciel de manière aléatoire chaque début de mois et les résultats seront annoncés sur notre page facebook.
Les gagnants seront tirés au sort parmi les bonnes réponses de nos abonnés de notre nouvelle chaîne Youtube.


je participe au tirage au sort en m'abonnant à la chaîne YouTube Je participe au concours afin de gagner la calculatrice.

D'autres documents similaires

Inscription gratuite à Mathovore.  Mathovore c'est 1 610 742 cours et exercices de maths téléchargés en PDF et 149 337 membres.
Rejoignez-nous : inscription gratuite.