Volumes et sections : exercices de maths en 3ème corrigés en PDF.

La géométrie dans l’espace et les sections de solides à travers des exercices de maths en 3ème corrigés avec des calculs de volumes.

Vous pouvez télécharger en PDF ces énoncés afin de travailler à domicile après les avoir imprimés, la correction est détaillée pour le niveau troisième.

Exercice 1 – Volume et masse d’un lingot d’or

Un lingot d’or ayant la forme d’un parallélépipède rectangle et a les dimensions suivantes

– Longueur L = 7,5 cm ;
– largeur l = 3 cm ;
– hauteur h = 2,3 cm

On sait que la masse volumique de l’or est 19,3\,g/cm^3.

1. Calculer le volume de ce lingot d’or.
2. Calculer la masse de ce lingot d’or.
3. On décide de reproduire ce lingot en l’agrandissant à l’échelle 3.

Quel sera alors le volume de la maquette obtenue ? Justifier la réponse.

Exercice 2 – Réservoir d’eau

Un réservoir d’eau est formé d’une partie cylindrique et d’une partie conique.

Réservoir d'eau

1. Donner, en dm3, le volume exact de la partie cylindrique en utilisant le nombre\pi.

2. Donner, en dm3, le volume exact de la partie conique en utilisant le nombre \pi.

3. Donner le volume exact du réservoir, puis sa valeur arrondie à 1 dm3 près.

4. Ce réservoir peut-il contenir 1000 litres? Justifier la réponse.

Exercice 3 – Bloc de pierre et prisme droit à base trapézoïdale

D’un bloc de pierre ayant la forme d’un pavé droit ADEFIJKL,

un sculpteur veut extraire le prisme droit ABCDFGHE ayant pour base le trapèze isocèle ABCD.

On donne : AD = 40 cm  ;  AI = 15 cm  ;  AF = 20 cm  ;  IB = 5 cm.

1) a) Calculer l’aire du trapèze ABCD.

b) Calculer le volume du prisme ABCDFGHE.

2) Calculer AB (donner la valeur exacte).

3) Calculer tan(\widehat{BAI}).

En déduire la valeur arrondie de \widehat{BAI}  à un degré près.

Exercice 4 – Volume d’un ballon de basket et d’une balle de tennis

1. On admet qu’un ballon de basket est assimilable à une sphère de rayon R1 = 12,1 cm.

Calculer le volume V1, en cm3, de ce ballon; donner le résultat arrondi au cm3.

2. On admet qu’une balle de tennis est assimilable à une sphère de rayon R2, en cm.

La balle de tennis est ainsi une réduction du ballon de basket. Le coefficient de réduction est \frac{4}{15} .

a) Calculer R2 ; donner le résultat arrondi au mm.

b) Sans utiliser cette valeur de R2, calculer le volume V2, en cm3, d’une balle de tennis ; donner le résultat arrondi à l’unité.
Rappel : Volume d’une sphère de rayon R : V=\frac{4}{3}\pi\times   R^3

Exercice 5 – Problème du pigeonnier

Un pigeonnier est composé d’un parallélépipède rectangle ABCDEFGH et d’une pyramide SEFGH dont la hauteur [SO] mesure 3,1 m.

On sait que AB = 3 m, BC = 3,5 m et AE = 4 m.

Pigeonnier et calcul du volume.

1.Calculer la longueur BD et en déduire celle de BH.

On donnera des valeurs approchées de ces résultats à 10^{-1} près.

2. Calculer en m^3 le volume V_1  de ce pigeonnier.

3. Un modéliste désire construire une maquette de ce pigeonnier à l’échelle \frac{1}{24}.

Calculer en dm^3 le volume V_2 de la maquette.

On donnera une valeur approchée de ce résultat à 10^{-3} près.

Exercice 6 – La pyramide du Louvre

La pyramide du Louvre est une pyramide régulière à base carrée de 35 m de côté, sa hauteur est 22 m.

Pyramide du Louvre

1) Calculer l’aire de sa base.

2) Calculer la valeur exacte du volume V de cette pyramide.

Donner la valeur arrondie de V au mètre cube.

3) Dans un parc de loisirs, on construit une réduction de cette pyramide ; le côté de la base carrée mesure 7 m.

a) Calculer l’échelle de cette réduction.

b) Calculer la hauteur de la pyramide réduite.

c) Par quel nombre faut-il multiplier le volume V de la pyramide du Louvre pour obtenir le volume V’ de la pyramide réduite ?

Exercice 7 – Cornet de glace et quantité de glace

Un cornet de glace est formé par un cône de révolution de hauteur 10 cm et une demi-boule de rayon 3 cm.

le cône est rempli complétement de glace.

Calculer la quantité nécessaire de glace, en cL, nécessaire pour confectionner ce cornet.

Cornet de glace et cône de révolution.

Exercice 8 – Volume d’un cône de révolution et sections de solides

Le cône de révolution ci-dessous de sommet S a une hauteur [SO] de 9 cm et un rayon de base [OA] de 5 cm.

a. Calculer le volume V_1 de ce cône au  cm^3 près.

b. Soit M le point du segment [SO] tel que SM = 3 cm.

On coupe le cône par un plan parallèle à la base passant par M.

Calculer le rayon de cette section.

c. Calculer le volume V_2  du petit cône de sommet S ainsi obtenu au cm^3 près.

Volume d'un cône de révolution et section

Exercice 9 – Tajine et calcul du volume d’un cône

Une Tajine est un plat composé d’une assiette circulaire

et d’un couvercle en forme de cône qui s’emboîte parfaitement sur l’assiette .

L’assiete de ce tajine a un rayon [OA] qui mesure 15 cm et la géneratrice du cône [SA] mesure 25 cm .

1) Calculer la hauteur OS du cône .

2) Montrer que la valeur exacte du volume du cône est égale à 1500\pi\,cm^3 .

Exercice 10 – Volume d’un prisme droit

Calculer le volume de ce prisme droit sachant que :

ABC est rectangle et isocèle en B

et BA = BC = BF = 5 cm .

Volume d'un prisme

Exercice 11 – Calcul du volume d’un prisme droit

Calculer le volume du prisme droit sachant que :

ABC est rectangle en C et CB = 5 cm , CA = 4 cm et AD = 7 cm .

Volume d'un tétraèdre.

Exercice 12 – Calculer le volume d’une pyramide

Calculer le volume de cette pyramide sachant que :

ABCD est un carré de 8 cm et h = 11 cm .

Arrondir le résultat au mm² près.

Volume d'une pyramide

Exercice 13 – Calcul du volume d’un cylindre

Calculer le volume du cylindre ci-dessous, sachant que  :

R= 3 cm et h = 5 cm (donner le résultat au mm² près).

calcul du volume d'un cylindre

Exercice 14 – Calculer le volume de ce cône de révolution

sachant que SO = 8 cm et OA = 6 cm (arrondir le résultat au mm² près).

Cône de révolution

Exercice 15 – Volume d’un parallélépipède rectangle ou pavé droit

Calculer le volume du pavé droit (parallélépipède rectangle ) suivant :

Parallélépipède Rectangle

Exercice 16 – Volume du tronc d’une pyramide

1/Le bac à fleurs ABCDEFGH est un tronc de pyramide qui a été formé en coupant la pyramide régulière SABCD par un plans parallèle a sa base.

ABCD et EFGH sont deux carrés de centres respectif O et M .

On donne:AB=70cm;EF=30cm et OM=60cm .

On note h la hauteur SO en cm .

a.Exprimer de deux facons différentes,SM en fonction de h.

b.En déduire une equation dont h est solution.

c.Résoudre cette équation afin de trouver la valeur de h.

d.Calculer le volume de ce bac a fleurs.

2/Voici comment le mathématicien hindou Bhaskara calculait le volume d’un tronc de pyramide au XII eme siecle:

La somme des aire des base et de l’aire d’un rectangle de largueur la somme des largueur des base et de longueurla somme des longueur des base,étant diviser par six puis multiplier par la profondeur donne le volume.

Appliquer cette methode pour calculer le volume du bac a fleur ci-dessus :

Volume du tronc d'une pyramide et section de solides.

Exercice 17 – Volume d’un prisme

On donne: AB =6 m, AE = 5m, AD = 1.80m, BC = 0.80m .

Sur le schéma ci dessus, les dimensions ne sont pas respectées.

1. Montrer que le volume ce cette piscine est 39 m3 .

2. A la fin de l’été, M.Dujardin vide sa piscine à l’aide d’une pompe dont le débit est 5m3 par heure. Calculer le nombre de m3 restant dans la piscine au bout de 5 heures.

Volume d'un prisme

Exercice 18 – Géométrie dans l’espace

On a représenter ci-contre un réservoir parallélépipédique permettant de mesurer la hauteur d’eau tombée dans un jardin pendant une averse (voir ci-dessous)

1. On assimile les gouttes d’eau à des boules de diamètre 4mm.

Calculer le volume d’une goutte d’eau. Donner leur valeur exacte.

2. La hauteur d’eau tombée pendant cette averse est égale à 8cm.

Calculer le nombre de gouttes d’eau contenues dans le réservoir. On donnera la valeur approché par défaut.

Pavé droit.

Exercice 19 – Coefficient de réduction et pyramide

Une pyramide SABCD à base rectangulaire par un plan parallèle à base à 5 cm du sommet . AB=4,8cm ; BC=4,2cm et SH=8cm.

Pyramide à base rectangulaire et section.

a. Calculer le coefficient de K de réduction entre les pyramides SABCD et SA’B’C’D’ .

b. Calculer le volume de la pyramide SABCD .

c. En déduire le volume de la pyramide SA’B’C’D’ .

Exercice 20 – Volume et aire d’une boule

une boule de laiton mesure 10cm de diamètre.

Le laiton est un alliage constitué de 40% de zinc est de 60% de cuivre.

1)Calculer le volume de cette boule.(arrondir a 1/10cm3 près)

2)On veut recouvrir cette boule de peinture dorée.

a)Calculer l’aire de la surface de la boule.

Donner la valeur exacte.

b)De quelle quantité de peinture est nécessaire si 1dl recouvre 0.1m²?

3) la boule est sciée selon un plan situé à 3cm de son centre.

a)calculer le rayon du cercle de section, la longueur de ce cercle et l’aire du disque de section.

Donner les valeurs exactes puis les valeurs arrondies au cm près et cm² près.

Exercices 21 à 33 ...


Télécharger et imprimer ce document en PDF gratuitement :

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «volumes et sections : exercices de maths en 3ème corrigés en PDF.» au format PDF.

Vous devez vous inscrire ou vous connecter à votre compte afin de pouvoir télécharger ce document au format PDF.

Réviser les leçons et les exercices avec nos Q.C.M :


D'autres utilitaires pour progresser en autonomie :


Inscription gratuite à Mathovore.  Mathovore c'est 14 070 255 cours et exercices de maths téléchargés en PDF.

Mathovore

GRATUIT
VOIR