cours maths 3eme

Trigonométrie dans le triangle rectangle : cours de maths en 3ème

La trigonométrie dans le triangle rectangle dans un cours de maths en 3ème faisant intervenir le cosinus (cos), le sinus (sin) et la tangente (tan) d’un angle aigü ainsi que le calcul de la mesure d’un angle à l’aide de la calculatrice. Dans cette leçon en troisième, nous veillerons à mettre la calculatrice en mode degré (DEG).

0. Introduction :un peu d’histoire

Point de vue historique :
Le mot vient du grec « trigone » (triangle) et « metron » (mesure).Dans l‘Encyclopédie (1751), Jean le Rond d‘Alembert (1717 ; 1783) définit la trigonométrie comme :

« l‘art de trouver les parties inconnues d‘un triangle par le moyen de celles qu‘on connaît ».

C‘est bien la démarche qui est demandée aux élèves du collège.

I. Relations trigonométriques dans le triangle rectangle :

Théorème :
Dans un triangle rectangle ABC, on peut définir les relations suivantes entre les angles aigus et les différentes longueurs des côtés.cours de maths

Définition :

– Le cosinus d’un angle aigu est donné par:

\fbox{ cos(\widehat{ABC})=\frac{longueur\,du\,cote\,adjacent\,a\,l'angle\,\widehat{ABC}}{longueur\,de\,l'hypotenuse} .

– Le sinus d’un angle aigu est donné par :

\fbox{ sin(\widehat{ABC})=\frac{longueur\,du\,cote\,oppose\,a\,l'angle\,\widehat{ABC}}{longueur\,de\,l'hypotenuse} .

– La tangente d’un angle aigu est donnée par :

\fbox{ tan(\widehat{ABC})=\frac{longueur\,du\,cote\,oppose\,a\,l'angle\,\widehat{ABC}}{longueur\,du\,cote\,adjacent\,a\,l'angle\,\widehat{ABC}} .

Moyen mnémotechnique :
SOH-CAH-TOA

Explications:

CAH: Cos(\widehat{ABC} )= (longueur du cote Adjacent a l’angle \widehat{ABC} ) : (longueur de l’Hypotenuse )

SOH: Sin(\widehat{ABC} )= (longueur du cote Opposé a l’angle \widehat{ABC} ) : (longueur de l’Hypotenuse )

TOA: Tan(\widehat{ABC} )= (longueur du cote Opposé a l’angle \widehat{ABC} ): (longueur du cote Adjacent a l’angle \widehat{ABC} )

Remarques :

– Le sinus et le cosinus d‘un angle sont toujours compris entre – 1 et 1.

– Par contre, la tangente d‘un angle aigu peut prendre toutes les valeurs.

Exemples :

Si AC=16 cm et BC=20 cm, calculer sin\,(\widehat{ABC}).

[ Réponse :  sin\,(\widehat{ABC})=0,8]

Si AC=16 cm et AB= 12 cm, calculer tan(\widehat{ABC})

[ Réponse :  tan(\widehat{ABC}) =1,33]

II. Détermination de la mesure d’un angle en degré, connaissant son cox ou sin x ou tan x :

Méthodologie :
La détermination de la mesure d‘un angle connaissant son cos x, sin x ou tan x s‘effectue à l‘aide de la calculatrice en utilisant les touches :\fbox{cos^{-1}}\,,\,\fbox{sin^{-1}}\,,\,\fbox{tan^{-1}}\,\, .

En ayant vérifié, préalablement, que la calculatrice est en mode degré \fbox{DEG}.

Exemples :

Si cos x = 0,5 alors  x=cos^{-1}(0,5)=60^o .

Si sin x = 0,5 alors  x=sin^{-1}(0,5)=30^o .

Si tan x = 1 alors  x=tan^{-1}(1)=45^o .

III. Formules Trigonométriques :

Propriété :

Pour tout angle x, les égalités suivantes sont toujours vraies :

\bullet \fbox{cos^2 x+sin^2 x = 1} \\ \\ \bullet \fbox{tanx=\frac{sin x}{cos x}}\,\,\,(x\neq 90^o)

cours de maths

Preuve :

 cos x=\frac{AB}{BC}\,;\,sin x=\frac{AC}{BC}\,;\,tan x=\frac{AC}{AB} .

 cos^2 x + sin^2 x =(\frac{AB}{BC})^2+(\frac{AC}{BC})^2=\frac{AB^2}{BC^2}+\frac{AC^2}{BC^2}=\frac{AB^2+AC^2}{BC^2} .

Or ABC est rectangle en A, donc d‘après la partie directe du théorème de Pythagore : AB²+AC²=BC²

D’où :

 cos^2 x + sin^2 x =\frac{AB^2+AC^2}{BC^2}=\frac{BC^2}{BC^2}=1 .

Puis

 \frac{sin x}{cos x}=\frac{\frac{AC}{BC}}{\frac{AB}{BC}}=\frac{AC}{BC}\times  \frac{BC}{AB}= \frac{AC}{AB}=tan x .

Vous avez assimilé le cours sur la trigonométrie en 3ème ?

Effectuez ce QCM sur la trigonométrie dans le triangle rectangle afin d’évaluer vos acquis sur cette leçon en troisième.

Trigonométrie dans le triangle rectangle

 


Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «trigonométrie dans le triangle rectangle : cours de maths en 3ème» au format PDF.



Télécharger nos applications gratuites avec tous les cours,exercices corrigés Application Mathovore sur Google Play Store. Application Mathovore sur Apple Store.

.

D'autres fiches similaires à trigonométrie dans le triangle rectangle : cours de maths en 3ème.

Mathovore vous permet de réviser en ligne et de progresser en mathématiques tout au long de l'année scolaire.
De nombreuses ressources destinées aux élèves désireux de combler leurs lacunes en maths et d'envisager une progression constante. Tous les cours en primaire, au collège, au lycée mais également, en maths supérieures et spéciales ainsi qu'en licence sont disponibles sur notre sites web de mathématiques.
Des documents similaires à trigonométrie dans le triangle rectangle : cours de maths en 3ème à télécharger ou à imprimer gratuitement en PDF avec tous les cours de maths du collège au lycée et post bac rédigés par des enseignants de l'éducation nationale.
Vérifiez si vous avez acquis le contenu des différentes leçons (définition, propriétés, téhorèmpe) en vous exerçant sur des milliers d'exercices de maths disponibles sur Mathovore et chacun de ces exercices dispose de son corrigé.
En complément des cours et exercices sur le thème trigonométrie dans le triangle rectangle : cours de maths en 3ème, les élèves de troisième pourront réviser le brevet de maths en ligne ainsi que pour les élèves de terminale pourront s'exercer sur les sujets corrigé du baccalauréat de maths en ligne.

Les dernières fiches mises à jour

Voici les dernières ressources mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

Retrouvez nos cours de maths et exercices corrigés sur notre chaîne YouTube.

Inscription gratuite à Mathovore.  Mathovore c'est 1 965 914 cours et exercices de maths téléchargés en PDF et 166 750 membres.
Rejoignez-nous : inscription gratuite.

videos maths youtube
Mathovore

GRATUIT
VOIR