Statistiques : corrigé des exercices de maths en 3ème en PDF.

Aidez-nous à améliorer cette page en signalant une erreur Signaler une erreur Aidez-nous à améliorer cette page en signalant une erreur
Le corrigé des exercices de maths en 3ème sur les statistiques. Savoir calculer une moyenne, une fréquence et la médiane d’une série statistiques en troisième.

Exercice 1 :

Soit x le nombre de filles le nombre de garçons est 25-x.

\frac{11x+9,5\times   (25-x)}{25}=10,4

11x+9,5\times   (25-x)=10,4\times   25

11x+9,5\times   25-9,5x=260

11x+237,5-9,5x=260

1,5x=260-237,5

x=\frac{22,5}{1,5}

x=15

Conclusion : il y a 15 filles et 10 garçons dans cette classe .

Exercice 2 :

hauteur en (m) 1.2   1.3    1.4   1.5   1.6
Effectif            21     37     51    22   14

1. Calculer la moyenne de cette série .

\overline{x}=\frac{1,2\times   21+1,3\times   37+1,4\times   51+1,5\times   22+1,6\times   14 }{21+37+51+22+14}

\overline{x}=\frac{200,1 }{145}

\overline{x}=1,38

La taille moyenne est de 1,38 mètre .

2. Déterminer la médiane de cette série .

145 est un nombre impair, il faut donc regarder la 73 ème valeur .

La médiane est 1,4 .

3. Interpréter les résultats obtenus précédemment .

Si tous les éléments avaient la même taille, chaque élément aurait une hauteur de 1,38 mètre .

Il y a autant d’élément qui ont une hauteur supérieure à 1,4 mètre qu’inférieurs à 1,4 mètre .

Exercice 3 :

groupe de personnes
tailles en cm     130 145 155 160 170 175 180 190
effectifs              3   5   11  25   36   20   8    2
effectifs cumules

1) calculer la taille moyenne de ces personnes

\overline{x}=\frac{130\times   3+145\times  5+155\times  11+160\times  25+170\times  36+175\times  20+180\times  8+190\times  2}{3+5+11+25+36+20+8+2}

\overline{x}=\frac{390+725+1705+4000+3120+3500+1440+380}{110}

\overline{x}=\frac{15260}{110}

\overline{x}\simeq 138,73

2) Calculer le premier quartile Q1 ,la médiane et le troisième quartile Q3 de cette serie.
Pour le 1er quartile :

L’effectif total est 110

\frac{110}{4}=27,5

Il faut donc regarder la 28éme valeur.

Q_1=160\,\,cm

Pour la médiane :

110 est paire donc il faut faire la moyenne de la 55ème et 56ème valeur.

donc la médiane est de 170 cm .

Pour le 3ème quartile :

\frac{3\times   110}{4}=82,5

Il faut donc regarder la 83 ème valeur .

Q_3=175\,\,cm

3) Calculer l’étendue de la série initiale des tailles ?

190-130=60 cm

Exercice 4 :

10 20 30 40 50 60
15 25 35 45 55 65
240 628 556 370 356 190

1er ligne : Age noté « a »
2eme ligne : Centre des classe
3eme ligne : Effectifs

Pendant les vacances de Noël mr GLISSSE est parti skier à L’alpe d’hurez .Pendant une heure, on a relevé l’age des personnes qui sont montée dans un telesiege ( voir le tableau)

1)Calculer le nombre de personnes ayant pris le télésiège pendant cette heure.

N=240+628+556+370+356+190=2 340 personnes

2)Compléter la 2eme ligne du tableau .

Voir le tableau

3)Calculer l’age moyen des skieurs Arrondir le resultat a l’unité.

\,\overline{x}=\frac{15\times   240+25\times  628+35\times  556+45\times  370+55\times  356+65\times  190}{2340}

\,\overline{x}\simeq 37,32

Conclusion : l’âge moyen des skieurs est de 37 ans.

Exercice  5 :

Voici les notes obtenues par 13 élèves à un devoir de mathématiques :
8;9;19;17;6;18;18;8;14;12;9;10;11

1. calculer la moyenne arrondie au centième de cette série de notes .

\overline{x}=\frac{8+9+19+17+6+18+18+8+14+12+9+10+11}{13}

\overline{x}=\frac{159}{13}

{\color{DarkRed} \overline{x}\simeq 12,23}

2. calculer le pourcentage d’élèves qui ont une note supérieure à cette moyenne de la classe .

les notes supérieures à la moyenne de la classe sont :19,17,18,18,14

Il y a 5 notes

\frac{5}{13}\times   100\simeq 38,46\,%

3. déterminer la médiane de cette série de notes .

6;8;8;9;9;10;11;12;14;17;18;18;19

Il y 13 notes , 13 est impair donc la médiane est la 7ème valeur.

La médiane est 11 .

Exercice  6 :

\overline{x}=\frac{2\times  ,65+5\times  ,72+4\times  ,75+5\times  ,80+3\times  ,82+1\times  ,90}{2+5+4+5+3+1}

\overline{x}=\frac{130+360+300+400+246+90}{20}

\overline{x}=\frac{1526}{20}

\overline{x}\simeq,76,3

La moyenne du poul des élèves est de 76,3

Exercice  7 :

a) 230-29=201

L’étendue est de 201 km.

b)

\overline{x}=\frac{195+165+195+.....+163+53+143,}{21}

\overline{x}=\frac{3554,}{21}

\overline{x}\simeq,169\,\,km

Si toutes les étapes avaient la même longueur, chaque étape aurait une distance de 169 km.

c) Rangeons les valeurs par ordre croissant :

29-53-143-154-157-158-163-165-166-168-174-182-182-195-195-195-197-210-216-222-230-

Il y a 28 valeurs et 21 est un nombre impair

donc la médiane est la 11ème valeur soit 174 km .

d) L’étendue est 53-29 = 24 km

La moyenne est (53+29):2=82:2=41 km .

La médiane est aussi la moyenne.

Exercice 8 :

1. \overline{x}=\frac{0\times   2+1\times  6+2\times  11+3\times  9+4\times  12+.....+19\times  11+20\times  5}{200}

\overline{x}=\frac{2068}{200}

\overline{x}=10,34

Exercice 9 :

1. \overline{x}=\frac{18,6+19,4+20,8+15,9+17,7+21,1+19,8+15,2+17,2+16,5+20,5+21,9}{12}\simeq 18,7

Interprétation :

Si l’athlète avait effectué tous les mêmes lancers, il aurait effectué des lancers de 18,7 mètres.

2.  15,2<15,9<16,5<17,2<17,7<18,6<19,4<19,8<20,5<20,8< 21,1< 21,9

Il y a 12 valeurs et 12 est pair, donc faisons la moyenne de la sixième et septième valeur.

\frac{18,6+19,4}{2}=19

Interprétation :

Il y a autant de lancers en-dessous de 19 mètres qu’au dessus.

Exercice 10 :

Il y a deux correcteurs au brevet des collèges:
le premier a 11 de moyenne avec 55 candidats et son collègue n’a que 9,5 de moyenne avec 45 candidats.
Quelle est la moyenne générale.

\,\overline{x}=\frac{11\times   55+9,5\times   45}{55+45}

\,\overline{x}=\frac{1032,5}{100}

\,\overline{x}=10,325

Voir Corrigés 11 à 20...
Voir Corrigés 21 à 24...
Aidez-nous à améliorer cette page en signalant une erreur Signaler une erreur Aidez-nous à améliorer cette page en signalant une erreur

Télécharger et imprimer ce document en PDF gratuitement :

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «statistiques : corrigé des exercices de maths en 3ème en PDF.» au format PDF.


Réviser les leçons et les exercices avec nos Q.C.M :


D'autres utilitaires pour progresser en autonomie :


Inscription gratuite à Mathovore.  Mathovore c'est 14 081 387 cours et exercices de maths téléchargés en PDF.

Mathovore

GRATUIT
VOIR