Sujet 2018 France du brevet de maths des collèges

brevet maths 2018

DIPLÔME NATIONAL DU BREVET
SESSION 2018
MATHEMATIQUES
Série générale
Durée de l’épreuve : 2 h 00 sur  100 points

L’évaluation prend en compte la clarté et la précision des raisonnements ainsi que, plus largement, la qualité de la rédaction. Elle prend en compte les essais et les démarches engagées, même non aboutis.

Exercice 1 (11 points)
Le gros globe de cristal est un trophée attribué au vainqueur de la coupe du monde de ski. Ce trophée pèse 9 kg et mesure 46 cm de hauteur.
1. Le biathlète français Martin Fourcade a remporté le sixième gros globe de cristal de sa carrière en 2017 à Pyeongchang en Corée du Sud.

Donner approximativement la latitude et la longitude de ce lieu repéré sur la carte ci-dessous.


2. On considère que ce globe est composé d’un cylindre en cristal de
diamètre 6 cm, surmonté d’une boule de cristal. Voir schéma ci-dessous.

Montrer qu’une valeur approchée du volume de la boule de ce trophée est de 6371 cm^3.
3. Marie affirme que le volume de la boule de cristal représente environ 90% du volume total du trophée. A-t-elle raison ?

Rappels :

– volume d’une boule de rayon R : V=\frac{4}{3}\pi\times\,R^3

– volume d’un cylindre de rayon r et de hauteur h : V=\pi\times r^2\times h

 Exercice 2 (14 points)
Parmi les nombreux polluants de l’air, les particules fines sont régulièrement surveillées.
Les PM10 sont des particules fines dont le diamètre est inférieur à 0,01 mm.
En janvier 2017, les villes de Lyon et Grenoble ont connu un épisode de pollution aux particules fines. Voici des données concernant la période du 16 au 25 janvier 2017 :

1. Laquelle de ces deux villes a eu la plus forte concentration moyenne en PM10 entre le 16 et le 25 janvier ?
2. Calculer l’étendue des séries des relevés en PM10 à Lyon et à Grenoble. Laquelle de ces deux villes a eu l’étendue la plus importante ? Interpréter ce dernier résultat.
3. L’affirmation suivante est-elle exacte ? Justifier votre réponse.
« Du 16 au 25 janvier, le seuil d’alerte de 80 μg/m^3 par jour a été dépassé au moins 5 fois à Lyon ».

Exercice 3 (12 points)
Dans son lecteur audio, Théo a téléchargé 375 morceaux de musique. Parmi eux, il y a 125 morceaux de rap. Il appuie sur la touche « lecture aléatoire » qui lui permet d’écouter un morceau choisi au hasard parmi tous les morceaux disponibles.

1. Quelle est la probabilité qu’il écoute du rap ?
2. La probabilité qu’il écoute du rock est égale à \frac{7}{15} .
Combien Théo a-t-il de morceaux de rock dans son lecteur audio ?

3. Alice possède 40 % de morceaux de rock dans son lecteur audio.
Si Théo et Alice appuient tous les deux sur la touche « lecture aléatoire » de leur lecteur audio, lequel a le plus de chances d’écouter un morceau de rock ?

Exercice 4 (14 points)
La figure ci-dessous n’est pas représentée en vraie grandeur.
Les points , et sont alignés.
Le triangle est rectangle en .
Le triangle est rectangle en .


1. Montrer que la longueur est égale à 4 cm.
2. Montrer que les triangles et sont semblables.
3. Sophie affirme que l’angle \widehat{BFE} est un angle droit. A-t-elle raison ?
4. Max affirme que l’angle \widehat{ACD} est un angle droit. A-t-il raison ?

Exercice 5 (16 points)
Voici un programme de calcul.


1. Vérifier que si on choisit le nombre −1, ce programme donne 8 comme résultat final.
2. Le programme donne 30 comme résultat final, quel est le nombre choisi au départ ?
Dans la suite de l’exercice, on nomme le nombre choisi au départ.
3. L’expression A=2(4x+8) donne le résultat du programme de calcul précédent pour un nombre x donné.
On pose B=(4+x)^2-x^2.
Prouver que les expressions et B sont égales pour toutes les valeurs de  x.
4. Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. On rappelle que les réponses doivent être justifiées.

Affirmation 1 : Ce programme donne un résultat positif pour toutes les valeurs de x .
Affirmation 2 : Si le nombre x choisi est un nombre entier, le résultat obtenu est un multiple de 8.

Exercice 6 (16 points)
Les longueurs sont en pixels.
L’expression « s’orienter à 90 » signifie que l’on s’oriente vers la droite.

1. On prend comme échelle 1 cm pour 50 pixels.
a. Représenter sur votre copie la figure obtenue si le programme est exécuté jusqu’à la ligne 7 comprise.
b. Quelles sont les coordonnées du stylo après l’exécution de la ligne 8 ?
2. On exécute le programme complet et on obtient la figure ci-dessous qui possède un axe de symétrie vertical.


Recopier et compléter la ligne 9 du programme pour obtenir cette figure.
3. a. Parmi les transformations suivantes, translation, homothétie, rotation, symétrie axiale, quelle est la transformation géométrique qui permet d’obtenir le petit carré à partir du grand carré ? Préciser le rapport de réduction.
b. Quel est le rapport des aires entre les deux carrés dessinés ?

Exercice 7 (17 points)
Le hand-spinner est une sorte de toupie plate qui tourne sur elle-même.


On donne au hand-spinner une vitesse de rotation initiale au temps t = 0, puis, au cours du temps, sa vitesse de rotation diminue jusqu’à l’arrêt complet du hand-spinner. Sa vitesse de rotation est alors égale à 0.
Grâce à un appareil de mesure, on a relevé la vitesse de rotation exprimée en nombre de tours par seconde.
Sur le graphique ci-dessous, on a représenté cette vitesse en fonction du temps exprimé en seconde :

1. Le temps et la vitesse de rotation du hand-spinner sont-ils proportionnels ? Justifier.
2. Par lecture graphique, répondre aux questions suivantes :
a. Quelle est la vitesse de rotation initiale du hand-spinner (en nombre de tours par seconde) ?
b. Quelle est la vitesse de rotation du hand-spinner (en nombre de tours par seconde) au bout d’1 minute et 20 secondes ?
c. Au bout de combien de temps, le hand-spinner va-t-il s’arrêter ?
3. Pour calculer la vitesse de rotation du hand-spinner en fonction du temps , notée (), on utilise la fonction suivante :
V(t)=-0,214\times t+V_{initiale}
t est le temps (exprimé en s) qui s’est écoulé depuis le début de rotation du hand-spinner
V_{initiale} est la vitesse de rotation à laquelle on a lancé le hand-spinner au départ.

a. On lance le hand-spinner à une vitesse initiale de 20 tours par seconde.

Sa vitesse de rotation est donc donnée par la formule : V(t)=-0,214\times t+20.

Calculer sa vitesse de rotation au bout de 30 s.
b. Au bout de combien de temps le hand-spinner va-t-il s’arrêter ? Justifier par un calcul.
c. Est-il vrai que, d’une manière générale, si l’on fait tourner le hand-spinner deux fois plus vite au départ, il tournera deux fois plus longtemps ? Justifier.

Corrigés du brevet de maths  Consulter le corrigé en ligne

Vous pouvez, également, télécharger le sujet du brevet de maths 2018 en France au format PDF.



Télécharger nos applications gratuites avec tous les cours,exercices corrigés Application Mathovore sur Google Play Store. Application Mathovore sur Apple Store.

.

D'autres fiches similaires à sujet 2018 France du brevet de maths des collèges.

Mathovore vous permet de réviser en ligne et de progresser en mathématiques tout au long de l'année scolaire.
De nombreuses ressources destinées aux élèves désireux de combler leurs lacunes en maths et d'envisager une progression constante. Tous les cours en primaire, au collège, au lycée mais également, en maths supérieures et spéciales ainsi qu'en licence sont disponibles sur notre sites web de mathématiques.
Des documents similaires à sujet 2018 France du brevet de maths des collèges à télécharger ou à imprimer gratuitement en PDF avec tous les cours de maths du collège au lycée et post bac rédigés par des enseignants de l'éducation nationale.
Vérifiez si vous avez acquis le contenu des différentes leçons (définition, propriétés, téhorèmpe) en vous exerçant sur des milliers d'exercices de maths disponibles sur Mathovore et chacun de ces exercices dispose de son corrigé.
En complément des cours et exercices sur le thème sujet 2018 France du brevet de maths des collèges, les élèves de troisième pourront réviser le brevet de maths en ligne ainsi que pour les élèves de terminale pourront s'exercer sur les sujets corrigé du baccalauréat de maths en ligne.
  • 58
    Brevet de maths en France 2019 : sujet et corrigé à télécharger en PDF DIPLÔME NATIONAL DU BREVET SESSION 2019 MATHEMATIQUES Série générale Durée de l’épreuve : 2 h 00 100 points Exercice 1 : ( 10 points ) Le capitaine d'un navire possède un trésor constitué de 69 diamants, 1 150 perles et 4 140 pièces d'or. 1. Décomposer 69 ; 1 150…
    Tags: on, d, a, s, points, départ, exercice, programme, b, temps
  • 51
    Extraits du brevets de maths 2022 : réviser le DNB de maths. Des extraits de sujets du brevet de maths 2022 classés par chapitres. Ces extraits vous permettent de réviser le brevet des collèges afin de vous préparer dans les meilleurs conditions. En complément de tous les sujets du brevet de maths des sessions antérieures, Mathovore met à votre disposition des extraits…
    Tags: on, a, d, cm, b, l, nombre, exercice
  • 51
    Brevet de maths 2018 à Pondichéry : sujet et corrigé en PDF Exercice 1 : (13 points) On considère un jeu composé d’un plateau tournant et d’une boule. Représenté ci-dessous, ce plateau comporte 13 cases numérotées de 0 à 12. On lance la boule sur le plateau, La boule finit par s’arrêter au hasard sur une case numérotée. La boule a la même probabilité de…
    Tags: d, a, on, l, programme, résultat, s, nombre, boule, exercice
  • 50
    Brevet de maths 2018 en Amérique du Nord - sujet et corrigé Sujet du brevet de maths 2018 du collège en Amérique du nord le mardi 5 juin 2018.  Indication portant sur l’ensemble du sujet. Toutes les réponses doivent être justifiées, sauf si une indication contraire est donnée. Pour chaque question, si le travail n’est pas terminé, laisser tout de même une…
    Tags: l, d, ci-dessous, a, exercice, nombre, points, on, b, plus

Les dernières fiches mises à jour

Voici les dernières ressources mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

Retrouvez nos cours de maths et exercices corrigés sur notre chaîne YouTube.

Inscription gratuite à Mathovore.  Mathovore c'est 2 008 981 cours et exercices de maths téléchargés en PDF et 168 092 membres.
Rejoignez-nous : inscription gratuite.

A propos de webmaster 688 Articles
Webmaster du site Mathovore.

Soyez le premier à commenter