Valeur absolue et intervalle : exercices de maths en 2de corrigés en PDF.

Mis à jour le 28 mai 2025

Accueil >> Lycée >> Maths 2de >> Exercices de maths >> Exercices en 2de >> Valeur absolue et intervalle : exercices de maths en 2de corrigés en PDF.

✏️Exercices
2nde • Lycée
Valeur absolue et intervalle
⏱️ Temps de travail : 20-45 min
🎯 Niveau : Lycée
📱 Format : Gratuit
📄 PDF : Disponible

Exercice 1 :

Résoudre dans les équations et inéquations suivantes :

a)  | 2 – x | < 4

b)  | 6 – 2 x | = 3

c)  | x + 2 | > 3

d) | x + 2 | < | x + 3 |

e)  | x3 – 1 | + p >   0

f)  3 < | x + 2 | < 4

g)  | 4 x² – 12 x + 9 | = 4

h)  | 3 x + 1 | + | 1 – x | > 3

i)   | 1 + x² | = 2x

Exercice 2 :

Calculer.

a) |-4|               b) |3,8|                      c) |-\frac{100}{3}|

d)  |5-6|              e) |\sqrt{17}-2|             f) |2-\sqrt{17}|

Exercice 3 :

Sans calculatrice, simplifier :

a) |4|+|-3|                       b) |1,2|-|-1,2|

c) \frac{|5-8|-3}{2}                       d) 2|4-10|+|7-5|

Exercice 4 :

1.a) Sur une droite graduée, placer les nombres 5 et \frac{1}{3}.

b) Calculer la distance entre 5 et \frac{1}{3}.

2. Reprendre la question 1. avec 3 et -\frac{4}{5}.

3. Reprendre la question 1. avec -1 et -\frac{4}{5}.

Exercice 5 :

A l’aide d’une valeur absolue, écrire la distance entre :

a) \frac{125}{3} et 2.                               b) \sqrt{2}  et 5

c)  – 5 et \frac{12}{5}                               d) \pi  et 4

Exercice 6 :

sans calculatrice, simplifier :

a) |5-\pi|                         b) |8-\frac{2}{3}|                    c) |2-\frac{9}{2}|

d) |-1-8|                   e) |-5-\pi|                    f) |\frac{1}{2}+6|

Exercice 7 :

De la même façon que |x-3| représente la distance entre le nombre réel x et 3,

exprimer en termes de distance :

a) |x-100|                  b) |x-\frac{1}{3}|

c) |x+5|                       d) |1,35,-x|

e) |-7-x|                 f) |\pi-x|

Exercice 8 :

Déterminer l’ensemble, sous la forme d’intervalle, des réels x vérifiant :

a) ||x-10|\leq\, 1                    b) |x-2,5|\leq\, 0,2         c) |x-\frac{1}{2}|\leq\, \frac{5}{2}

Exercice 9 :

On considère un intervalle [a ; b] avec a et b deux nombres réels.

On appelle centre de l’intervalle [a ; b] le nombre c=\frac{a+b}{2}
et rayon de l’intervalle [a ; b] le nombre r=\frac{b-a}{2}.
Graphiquement, on a :
Valeur absolue

1. a) Calculer le centre et le rayon de [2 ; 6].

b) Traduire |x – 4| en termes de distance entre deux réels.
c) Recopier et compléter: x\in[2;6]\Leftrightarrow |x-4|\leq\, ...

2. De la même manière, recopier et compléter :
a) x\in[1;25]\Leftrightarrow |x-13|\leq\, ....
b) x\in[6;20]\Leftrightarrow |x-...|\leq\, ...
c) x\in[1,2;3]\Leftrightarrow |x-...|\leq\, ...

Exercice 10 :

Ecrire une inégalité vérifiée par x et utilisant une valeur absolue dans les cas suivants.

a) x\in [-4;5]      b) x\in [0;1,1]        a) x\in [ \frac{1}{3};\frac{2}{3}]

Exercice 11 :

On donne un axe gradué, sur lequel on a placé les points A, B et C.

Compléter les pointillés.
exercices valeur absolue 1

a. AB = ….   b. AC = …  c.  BC = …   d. CC = …

Exercice 12 :

On donne un axe gradué, sur lequel on a placé les points A, B et C.

Compléter les pointillés.

a. AB = ….   b. AC = …  c.  BC = …

Exercice 13 :
Ecrire sans les barres de valeurs absolues les nombres :

a.\,|\,(1-\sqrt{2})\,^2\,|

b.\,|\,2\sqrt{2}-\sqrt{3}|

c.\,|\,6-2\pi\,|

d.\,\frac{\,|\,-2|}{|\,-5+1|}

Exercice 14 :

Résoudre dans \mathbb{R} les équations suivantes :

a.\,|x\,|=5\\b.\,|-x\,|=19\\c.\,|x-7\,|=0\\d.\,|x+5,4\,|=0\\e.\,|x-5\,|=8\\f.\,|x-\frac{7}{2}\,|=2

Exercice 15 :

Résoudre dans \mathbb{R} les inéquations suivantes :

a.\,|x-2\,|\leq\,\,5\\\,b.\,|x-5\,|\leq\,\,1\\\,c.\,|x+1,5\,|+2,5<\,6\\\,d.\,|x-\sqrt{3}\,|\,<\,\sqrt{3}\\\,e.\,|x-2\,|\,\geq\,\,\sqrt{3}\\\,f.\,|x+\pi\,|\,<\sqrt{5}

Exercice 16 :

Recopier et compléter le tableau ci-dessous :

Enoncé

Intervalle

Représentation graphique

 -1\leq\,\,x<3 x \in
 4>x>0 x \in
 -7\geq\,\,x>\,-8 x \in
 x\in\,\mathbb{R}^+ x \in
 x\neq\,5 x \in

Exercice 17 :

Traduire sous forme d’intervalle :

1)  y > – 3 et y < 4              2)  y > – 3 ou y < 4

3)     y\leq\,\,\frac{1}{3}  et  y\leq\,\,\frac{1}{2}              4) y\leq\,\,\frac{1}{3} ou y\leq\,\,\frac{1}{2}

Exercice 18 :

Compléter avec les symboles \in ou \notin :

1)       7 … ] 0 ; 7 [

2)      5,9 … ] 5,8 ; +∞ [

3)       – 0,25 … ] – 0,3 ; – 0,2 [ … ] 1 ; 2 ]

4)      – 0,199 … ] – 0,2 ; – 0,19 [

5)       \pi…. [ 3,14 ; 3,141 [

Exercice 19 :

Vrai ou faux ?

1)      Si x ∈ [ 6,7 ; +∞ [  alors  x ∈ [ 6 ; +∞ [.

2)    Si x ∈ ] – 3 ; 4 [  alors  x ∈ [ – 2 ; 5 [.

3)    Si x ∉ [ – 5 ; 2[ alors x ∈ ] -\infty ; – 3 [ ∪ [ 2 ; +∞[.

4)   L’intervalle ] 0 ; 4[ est inclus dans [ 0 ; 4 [.

5)   \mathbb{N}\,\subset\,\mathbb{Q}^+.

6)   Si x\,\notin\,\mathbb{Q}  alors x\,\notin\,D.

Exercice 20 :

Simplifier les notations suivantes lorsque c’est possible.
A = [ – 5 ; 7[ ∪ [ – 2 ; 12 [
B = [ 0 ; +∞ [ ∪ ] – 2 ; +∞ [
C = ] –∞ ; 0 [ ∪ [ 0 ; +∞ [
D = ] -∞ ; 4/3 [ ∩ [ – 10 ; 10 ]
E = [ – 4 ; [ ∪ ] \frac{1}{2} ; 10]

Exercice 21 :

Représenter I et J sur une droite graduée, puis déterminer I ∩ J et I ∪ J.

1)                 I = [ 2 ; 5,5 ] et J = ] 1 ; 3 ].

2)                 I = [ – 1 ; +∞ [ et J = ] –2 ; 3 ].

3)                 I = ] – 1 ; 3 ] et J = [ – \sqrt{2}; \pi [.

4)                 I\,=\,\mathbb{R}^- et J\,=\,\mathbb{R}^+.

5)                 I = {1 ; 2 ; 3 ; 4} et J = [ – 5 ; 5 ].

Exercice 22 :

On considère des droites graduées sur lesquelles on a marqué des ensembles de nombres.

Donner l’intervalle correspondant.

Intervalle et ensemble de nombres

Exercice 23 :

Représenter sur une droite graduée et décrire, à l’aide d’un intervalle, chacun des ensembles de nombres réels x tels que :

a) 0\leq\,\,x\leq\,\,3                           b) -2<x<1

c) x\leq\,\,9                                    d) x>-3,5

Exercice 24 :

Représenter sur une droite graduée chacun des intervalles suivants.

a) ]1,6]                                  b) [-0,5;3,2]

c) ]-\infty;2]                              d) [0;+\infty[

Exercice 25 :

Ecrire les inégalités vérifiées par les réels x pour chacun des cas suivants.

a)    x\in[0;1,2]                                          b)    x\in]-\frac{5}{3};3]

c)  x\in[4,73;+\infty[                                    d) x\in\,]-\infty;0[

Exercice 26 :

Recopier et compléter par les signes \in et \notin.

a)  1,4...[0;7]                    b) -\pi...]-3;-1[

c)  6...[\frac{7}{3};+\infty[                 d)  -3...\,]-\infty;-3,5[

Exercice 27 :

Sans calculatrice, dire si \frac{2}{3} appartient aux intervalles suivants.

a) [0;\frac{4}{5}]                  b) [\frac{3}{5};1]                c) [\frac{1}{3};\frac{2}{5}]

Exercice 28 :

Soit I=[-6;8]  et J=]2;100[.

Dire si chacun des nombres suivants appartient à I, à J, à I\cap\,J, à I\cup\,J.

a) – 10       b)  – 6       c)  – 0,5        d) 2

e)  8,1    f)  99,9    g)  1 000   h)    0

Exercice 29 :

Compléter le tableau suivant :

Exercice 30 :

Parmi les affirmations suivantes, lesquelles sont vraies ?
Justifier.
a. Quels que soient les réels a et b, |a\,+\,b|\,=\,|a|\,+|b|.
b. Si |x|=|-x| alors x=0.
c. |a-b|=|b-a|
d. 4|x+y|=|4x+4y|.

5/5 - (1 vote)
×12

L’équipe Mathovore

Contenu mis à jour quotidiennement
12 Enseignants Titulaires

Collectif d'enseignants titulaires de l'Éducation Nationale, spécialisés en mathématiques en primaire, au collège, au lycée et post-bac.
Notre équipe collaborative enrichit constamment nos ressources pédagogiques.

12 Professeurs
200+ Années cumulées
Quotidien Mise à jour

Télécharger et imprimer ce document en PDF gratuitement :

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «valeur absolue et intervalle : exercices de maths en 2de corrigés en PDF.» au format PDF.


Nos applications

Téléchargez gratuitement la dernière version de nos applications.
Application Mathovore sur Google Play Store. Application Mathovore sur Apple Store.


Inscription gratuite à Mathovore.  Mathovore c'est 14 122 542 cours et exercices de maths téléchargés en PDF.