Cours maths 2de

Généralités sur les fonctions numériques : cours de maths en 2de

Les généralités sur les fonctions numériques dans un cours de maths en 2de où nous étudierons les opérations sur les fonctions ainsi que les  égalités. dans cette leçon en seconde, nous aborderons le sens de variation d’une somme, produit et composée de fonctions numériques.

I. Opérations algébriques sur les fonctions :

1. Egalité :

Définition :

Dire que deux fonctions f et g sont égales, ce que l’on note alors f = g, signifie qu’elles ont le même ensemble de définition D et que, pour tout x de D, f(x) = g(x).

2. Opérations :

Propriété :

Soient f et g deux fonctions définies respectivement sur Df et Dg.
Opérations :

OpérationNotationDefinitionDefinie pour :
Sommef+g\,D_f\cap\,D_g
Différencef-gx f(x)-g(x)\,D_f\cap\,D_g
Produitfgx f(x)g(x)\,D_f\cap\,D_g
quotient\frac{f}{g}x\,\frac{f(x)}{g(x)}\,D_f\cap\,D_g-\{x\in\,D_g\,,\,g(x)\neq\,0}

3. Composition de fonctions :

Définition :

Etant donné deux fonction f et g, la fonction gof (lire « g rond f ») est la fonction definie par

\,\fbox{gof(x)=g[f(x)]}

L’ensemble de définition de gof est constitué de tous les nombres x tels que x soit dans Df et f(x) soit dans Dg.

Exemple :

f est la fonction définie sur R par f(x)=x-2 et g est la fonction carrée.
Dans g(x), on remplace x par f(x).
Alors g(f(x))= (x-2)²
Donc gof est la fonction x  (x-2)² définie sur R.

II. Sens de variation:

1. Sens de variation d’une somme de fonction :

Théorème :
  • La somme de deux fonctions strictement croissantes sur un intervalle I est une fonction strictement croissante sur I.
  •  La somme de deux fonctions strictement décroissantes sur un intervalle I est une fonction strictement décroissante sur I.

2. Sens de variation de ku :

Définition :

Soit u une fonction définie sur un intervalle I et k un nombre réel.
ku est la fonction x ku(x).

Exemple :

si u(x)=x²+3, la fonction 5u (ici k=5) est x 5(x²+3) ainsi (5u)(x)=5x²+15.

Théorème :
  •  Si k>0, u et ku ont le même sens de variation sur I.
  • Si k<0, u et ku varient en sens contraires sur I.

3. Sens de variation d’une composée de fonctions :

Théorème :

Soient f et g deux fonctions strictement monotones, I est un intervalle inclus dans Df,
J un intervalle inclus dans Dg tel que pour tout x dans I, f(x) soit dans J.

  • Lorsque f et g ont même sens de variation, alors gof est strictement croissante sur I.
  •  Lorsque f et g ont des sens de variation différents, alors gof est strictement décroissante sur I.

Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «généralités sur les fonctions numériques : cours de maths en 2de» au format PDF.




Les dernières fiches mises à jour

Voici les dernières ressources mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

Des cours et exercices expliqués en vidéos



Rejoignez-nous sur notre chaîne YouTube

Concours : gagnez une PS4 ou un Ipad Pro

Nouveau concours avec une console Playstation 4 (PS4 ) ou une tableatte Ipad Pro à gagner.
Le tirage au sort sera effectué avec un logiciel de manière aléatoire chaque début de mois et les résultats seront annoncés sur notre page facebook.
Les gagnants seront tirés au sort parmi les 1 000 premiers abonnés de notre nouvelle chaîne Youtube.


je participe au tirage au sort en m'abonnant à la chaîne YouTube Je participe au tirage au sort en m'abonnant à la chaîne YouTube.

Inscription gratuite à Mathovore.  Mathovore c'est 1 554 550 cours et exercices de maths téléchargés en PDF et 147 175 membres.
Rejoignez-nous : inscription gratuite.

Traduire »
Mathovore

GRATUIT
VOIR