Cours maths 2de

Généralités sur les fonctions numériques : cours de maths en 2de

Les généralités sur les fonctions numériques dans un cours de maths en 2de où nous étudierons les opérations sur les fonctions ainsi que les  égalités. dans cette leçon en seconde, nous aborderons le sens de variation d’une somme, produit et composée de fonctions numériques.

I. Opérations algébriques sur les fonctions :

1. Egalité :

Définition :

Dire que deux fonctions f et g sont égales, ce que l’on note alors f = g, signifie qu’elles ont le même ensemble de définition D et que, pour tout x de D, f(x) = g(x).

2. Opérations :

Propriété :

Soient f et g deux fonctions définies respectivement sur Df et Dg.
Opérations :

Opération Notation Definition Definie pour :
Somme f+g \,D_f\cap\,D_g
Différence f-g x f(x)-g(x) \,D_f\cap\,D_g
Produit fg x f(x)g(x) \,D_f\cap\,D_g
quotient \frac{f}{g} x\,\frac{f(x)}{g(x)} \,D_f\cap\,D_g-\{x\in\,D_g\,,\,g(x)\neq\,0}

3. Composition de fonctions :

Définition :

Etant donné deux fonction f et g, la fonction gof (lire « g rond f ») est la fonction definie par

\,\fbox{gof(x)=g[f(x)]}

L’ensemble de définition de gof est constitué de tous les nombres x tels que x soit dans Df et f(x) soit dans Dg.

Exemple :

f est la fonction définie sur R par f(x)=x-2 et g est la fonction carrée.
Dans g(x), on remplace x par f(x).
Alors g(f(x))= (x-2)²
Donc gof est la fonction x  (x-2)² définie sur R.

II. Sens de variation:

1. Sens de variation d’une somme de fonction :

Théorème :
  • La somme de deux fonctions strictement croissantes sur un intervalle I est une fonction strictement croissante sur I.
  •  La somme de deux fonctions strictement décroissantes sur un intervalle I est une fonction strictement décroissante sur I.

2. Sens de variation de ku :

Définition :

Soit u une fonction définie sur un intervalle I et k un nombre réel.
ku est la fonction x ku(x).

Exemple :

si u(x)=x²+3, la fonction 5u (ici k=5) est x 5(x²+3) ainsi (5u)(x)=5x²+15.

Théorème :
  •  Si k>0, u et ku ont le même sens de variation sur I.
  • Si k<0, u et ku varient en sens contraires sur I.

3. Sens de variation d’une composée de fonctions :

Théorème :

Soient f et g deux fonctions strictement monotones, I est un intervalle inclus dans Df,
J un intervalle inclus dans Dg tel que pour tout x dans I, f(x) soit dans J.

  • Lorsque f et g ont même sens de variation, alors gof est strictement croissante sur I.
  •  Lorsque f et g ont des sens de variation différents, alors gof est strictement décroissante sur I.

Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «généralités sur les fonctions numériques : cours de maths en 2de» au format PDF.



Télécharger nos applications gratuites avec tous les cours,exercices corrigés Application Mathovore sur Google Play Store. Application Mathovore sur Apple Store.

.

Les dernières fiches mises à jour

Voici les dernières ressources mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

Des cours et exercices corrigés en 2de en vidéos


D'autres documents similaires

Inscription gratuite à Mathovore.  Mathovore c'est 1 698 681 cours et exercices de maths téléchargés en PDF et 152 817 membres.
Rejoignez-nous : inscription gratuite.

vidéos maths youtube
Mathovore

GRATUIT
VOIR