Factorisation et étude de signe : cours de maths en 2de

cours maths 2de
La factorisation et l’étude de signes dans un cours de maths en 2de où nous étudierons le signe d’une fonction affine et son tableau de variation puis la factorisation d’une expression littérale.Dans un second temps, nous traiterons dans cette leçon en seconde, le signe du produit de deux fonctions affines et enfin, le signe d’une fonction homographique.

L’élève devra avoir acquis les pré-requis suivants afin de pouvoir aborder ce chapitre :

Résoudre

  • une équation de type ax + b = 0;
  • une équation produit;
  • une inéquation de type ax + b > 0;
  • représenter les solutions sur un axe gradué

Factoriser

  • avec les identités remarquables;
  • avec un facteur commun évident.

I. Signe d’une fonction affine

Propriété :
Soit a et b deux nombres réels avec a\neq0.
La fonction affine définie sur \mathbb{R} par f (x) = ax + b s’annule et change de signe une fois dans
son domaine de définition pour x = -\frac{b}{a}.

Tableau de variation d'une fonction affine.

 

 

 

 

Preuve :

Soit f une fonction affine définie sur \mathbb{R} par f (x) = ax + b avec a a\neq0.
f (x) = 0 implique ax + b = 0 soit ax = −b et x=-\frac{b}{a}.
Si a > 0, la fonction f est croissante.
\star Pour x < -\frac{b}{a}, f(x)<f(-\frac{b}{a}).Or f(-\frac{b}{a})=0 donc f(x)<0.

\star  Pour x > -\frac{b}{a}, f(x)>f(-\frac{b}{a}).Or f(-\frac{b}{a})=0 donc f(x)>0.

Donc f est négative sur ]-\infty;-\frac{b}{a}[ puis positive sur]-\frac{b}{a};+\infty[.
Si a < 0, la fonction f est décroissante.
\star  Pour x < -\frac{b}{a}, f(x)>f(-\frac{b}{a}).Or f(-\frac{b}{a})=0 donc f(x)>0.

\star Pour x > -\frac{b}{a}, f(x)<f(-\frac{b}{a}).Or f(-\frac{b}{a})=0 donc f(x)<0.

Donc f est positive sur ]-\infty;-\frac{b}{a}[ puis négative ]-\frac{b}{a};+\infty[.

Méthode : dresser le tableau de signes d’une fonction affine.

Tableau de signe:
Le tableau de signes d’une fonction affine comporte deux lignes.
Sur la première ligne on indique les bornes du domaine de définition de la fonction et
la valeur qui annule la fonction.
Sur la deuxième ligne, par des pointillés verticaux sous la valeur qui annule,
on crée deux cases dans lesquelles on indique le signe de la fonction.

Exemple :

Dresser le tableau de signes de la fonction g définie sur \mathbb{R} par g : x \mapsto -3x + 4.

Le coefficient directeur,−3, est négatif donc g est décroissante.
Recherche de la valeur qui annule :
−3x + 4 = 0 soit x = \frac{-4}{-3}=\frac{4}{3}.
Tableau de variation

2. Factorisation

Remarque :

En classe de seconde, on a déjà des outils pour factoriser une grande partie
des polynômes de degré 2. D’autres outils seront étudiés en Première.

En Terminale, dans certaines séries, toutes les expressions seront factorisables.

Méthode : factoriser une expression littérale.

Méthode :
Soit a, b, k trois nombres réels.
\star Si un facteur est apparent, on utilise : ka+kb=k(a+b).
\star Si un facteur n’est pas apparent, on utilise les identités remarquables :
a^2-b^2=(a-b)(a+b) ,  a^2+2ab+b^2=(a+b)^2 , a^2-2ab+b^2=(a-b)^2.

Exemple :

Factoriser les expressions suivantes :
1) 4ac − 6ab
2) (x − 2)(5x − 1) + (2x + 7)(x − 2)
3) x^2- 6x + 9
4) 36x^2- 81

1) 4ac - 6ab = 2a(2c - 3b)
2)

(x - 2)(5x - 1) + (2x + 7)(x - 2) \\= (x - 2) ((5x - 1) + (2x + 7)) \\= (x - 2)(7x + 6)

3) x^2- 6x + 9 = x^2 - 2 \times x \times 3 + 32 = (x - 3)^2
4) 36x^2 -81 = (6x)^2- 9^2 = (6x + 9)(6x - 9).

3. Signe du produit de deux fonctions affines

Méthode :  étudier le signe du produit de deux fonctions affines.

Méthode :
Pour déterminer le signe du produit de deux fonctions affines, on construit un tableau de
signes à 4 lignes.
1) La 1e ligne indique les bornes de l’ensemble de définition
et les valeurs qui annulent le produit des deux fonctions affines.
2) Les 2e et 3e lignes indiquent le signe de chacune des deux fonctions affines.
3) La 4e ligne se remplit avec la règle des signes du produit de deux nombres relatifs :
a) des facteurs de même signe donnent un produit positif ;
b) des facteurs de signes contraires donnent un produit négatif.

Exemple :Résoudre l’inéquation (3x + 4)(-2x + 6) \leq 0.
On étudie le signe de la fonction h définie sur \mathbb{R} par h(x) = (3x + 4)(−2x + 6).
Recherche des valeurs qui annulent :
\star 3x + 4 = 0 implique x =-\frac{4}{3}.
\star  −2x + 6 = 0 implique x = 3.

tableau-variation

Les solutions de cette inéquation sont les nombres de l’ensemble 

4. Signe d’une fonction homographique

Définition :
Définition : fonction homographique.
On appelle fonction homographique toute fonction h qui peut s’écrire comme quotient de
fonctions affines. Soit a, b, c, d quatre réels tels que ad- bc \neq0 et c\neq0 : h(x) =\frac{ax + b}{cx + d}.
Propriété :
Une fonction homographique est définie sur \mathbb{R} privé de la valeur qui annule son dénominateur
dite « valeur interdite ».
Sa courbe représentative est une hyperbole qui comporte deux branches disjointes.

Factorisation et courbe de fonction homographique

Méthode : donner le domaine de définition d’une fonction homographique.

Méthode :
Pour identifier ce domaine de définition, il suffit de trouver la valeur interdite.

Exemple :

Quel est le domaine de définition de la fonction f définie par f (x) =\frac{5x + 4}{3x - 7} ?

Recherche de la valeur interdite : 3x - 7 = 0 \Leftrightarrow x =\frac{7}{3}.
Le domaine de définition de la fonction f définie par f (x) =\frac{5x + 4}{3x - 7}  est \mathbb{R}- \left \{ \frac{7}{3} \right \}.

Méthode : donner le tableau de signes d’une fonction homographique.

Méthode :
La méthode est similaire à celle du produit de deux fonctions affines.
La valeur qui annule le dénominateur ne faisant pas partie du domaine de définition de la
fonction doit être indiquée par une double barre.

Exemple :

Résoudre l’inéquation  \frac{3x - 5}{2x + 7}> 0.

On étudie le signe de la fonction l définie par l(x)= \frac{3x - 5}{2x + 7}.

\star Recherche de la valeur interdite :
2x + 7 \neq 0 implique x=-\frac{7}{2}  donc l est définie sur R \ \left \{ -\frac{7}{2} \right \}.
\star Recherche de la valeur qui annule l :
3x − 5 = 0 implique x=\frac{5}{3}.

\star Comparaison des valeurs trouvées pour les ranger sur la 1re ligne du tableau :-\frac{7}{2}<\frac{5}{3}.

Factorisation et tableau de variation

Les solutions de l’inéquation \frac{3x - 5}{2x + 7}> 0 sont  les nombres de l’ensemble ]-\infty;-\frac{7}{2}[\cup ]\frac{5}{3};+\infty[ .

 


Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «factorisation et étude de signe : cours de maths en 2de» au format PDF.



Télécharger nos applications gratuites avec tous les cours,exercices corrigés Application Mathovore sur Google Play Store. Application Mathovore sur Apple Store.

.

D'autres fiches similaires à factorisation et étude de signe : cours de maths en 2de.

Mathovore vous permet de réviser en ligne et de progresser en mathématiques tout au long de l'année scolaire.
De nombreuses ressources destinées aux élèves désireux de combler leurs lacunes en maths et d'envisager une progression constante. Tous les cours en primaire, au collège, au lycée mais également, en maths supérieures et spéciales ainsi qu'en licence sont disponibles sur notre sites web de mathématiques.
Des documents similaires à factorisation et étude de signe : cours de maths en 2de à télécharger ou à imprimer gratuitement en PDF avec tous les cours de maths du collège au lycée et post bac rédigés par des enseignants de l'éducation nationale.
Vérifiez si vous avez acquis le contenu des différentes leçons (définition, propriétés, téhorèmpe) en vous exerçant sur des milliers d'exercices de maths disponibles sur Mathovore et chacun de ces exercices dispose de son corrigé.
En complément des cours et exercices sur le thème factorisation et étude de signe : cours de maths en 2de, les élèves de troisième pourront réviser le brevet de maths en ligne ainsi que pour les élèves de terminale pourront s'exercer sur les sujets corrigé du baccalauréat de maths en ligne.
  • 61
    Fonctions : exercices de maths en 2de corrigés en PDF. Des exercices en seconde (2de) sur les généralités sur les fonctions. L'intégralité de ces fiches d'exercices sont corrigés. Exercice n° 1 : Etablir le tableau de signe des expressions algébriques suivantes : a. b. c. Exercice n° 2 : 1. Etablir le tableau de signe de l'expression algébrique suivante :…
    Tags: f, fonction, a, x, fonctions, b, d, on
  • 60
    Dérivée : exercices de maths en terminale corrigés en PDF. Des exercices de maths en terminale S sur les dérivées. Tous ces exercices disposent d'une correction détaillée et peuvent être imprimés au format PDF. Exercice 1 - Etude de fonctions numériques Etudier la fonction f définie sur a. b. c. d. e. Exercice n° 2 : La fonction est dérivable…
    Tags: f, fonction, a, on, fonctions, définie, b
  • 59
    Fonctions affines : cours de maths en 3ème Les  fonctions affines dans un cours de maths en 3ème où nous aborderons la définition et le calcul d'image ou d'antécédent puis nous verrons la représentation graphique ou la courbe d'une fonction. Dans cette leçon en troisième, nous déterminerons l'expression algébrique d'une fonction affine connaissant deux points de sa courbe.Notion…
    Tags: b, l, a, fonction, x, f, d, fonctions
  • 58
    Calcul littéral : correction des exercices en troisième Développer avec les identités remarquables, exercices corrigés de mathématiques en troisième (3ème) sur les identités remarquables. Exercice: Développer en utilisant les identités remarquable : Exercice : On considère les expressions E = x² − 5x + 5 et F = (2x − 7)(x − 2) − (x − 3)² .…
    Tags: x
  • 57
    Les équations et inéquations : correction des exercices en troisième Résoudre des équations du premier degré à une inconnue.Exercices corrigés de mathématiques en troisième (3ème). Exercice : Exercice : Déterminer trois nombres entier positifs consécutifs dont la somme des carrés est égale à 1 325.     Pour la facilité des calculs on choisira les nombres consécutifs suivants : n-1…
    Tags: x


Les dernières fiches mises à jour

Voici les dernières ressources mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.


Retrouvez nos cours de maths et exercices corrigés sur notre chaîne YouTube.

Inscription gratuite à Mathovore.  Mathovore c'est 2 015 398 cours et exercices de maths téléchargés en PDF et 168 294 membres.
Rejoignez-nous : inscription gratuite.

A propos de webmaster 688 Articles
Webmaster du site Mathovore.