cours maths 2de

Généralités sur les fonctions et fonctions usuelles : cours de maths en 2de en PDF.


 Les généralités sur les fonction numériques et les fonctions usuelles à travers un cours de maths en 2de. Dans cette leçon, nous étudierons les fonctions carrée, affine, linéaire, inverse et racine carrée ainsi que leur courbe représentatives. L’élève de vra être capable de calcul une image ou de déterminer un antécédent pas le calcul ou graphiquement.

I. Fonctions affines

1.   Définition

Définition :

Soient a et b deux réels donnés.Lorsque à chaque réel x, on associe le réel  ax + b, on définit une fonction affine f et on note f:x \mapsto   ax+b  ou la fonction f définie par  f(x)=ax+b.

Exemple :

Les fonctions  f et g respectivement définies sur \mathbb{R}par  f(x) = 3x + 5  et  g(x) = 2x – 7 sont des fonctions affines.

Remarque :

·  Lorsque b = 0, la fonction est dite linéaire, comme par exemple,  f(x) = -3x.

·  Lorsque a = 0, la fonction est dite constante, comme par exemple, f(x) = 3, pour tout réel x.

2.Représentation graphique d’une fonction affine :

Définition :

Dans un repère, la représentation graphique d’une fonction

affine  f:x \mapsto   ax+b est une droite. On dit que cette droite a pour équation  y = ax + b  et que a est son coefficient directeur, b son ordonnée à l’origine.

Cette droite passe par le point P(0 ; b).

Conséquences :

·  Dans le cas d’une fonction linéaire f:x \mapsto   ax, la droite d’équation y = ax passe par l’origine du repère. L’image est proportionnelle à la variable.·  Dans le cas d’une fonction constante, la droite d’équation  y = b est parallèle à l’axe des abscisses. L’image est constamment égale à b.

II. fonctions affines et taux de variation

Théorème :

Soit  f une fonction affine définie par f(x) = ax + b.

Alors, pour tous u et v tels que u\neq v\frac{f(u)-f(v)}{u-v}=a.

Ce rapport est appelé taux de variation de f entre u et v; il traduit la proportionnalité des écarts des images de la fonction par rapport aux variables.

Exercice :
Dans un repère, les points A et B ont pour coordonnées (-4 ; -1) et (2 ; 2).

Quelle est la fonction affine représentée par la droite (AB) ? Deux méthodes sont demandées.

III. Sens de variation d’une fonction affine

Théorème :

Soit f:x \mapsto   ax+b une fonction affine.

  1. Si  a > 0  alors  f est croissante sur \mathbb{R}.
  2. Si  a = 0  alors  f est constante sur \mathbb{R}.
  3. Si  a < 0  alors  f est décroissante sur \mathbb{R}.

Démonstration :

Soient u et v deux nombres réels tels que u < v.

f(u) – f(v) = au + b – (av + b) = a(u – v)

Si a est positif, alors  a  > 0  et comme  u – v < 0, on déduit que  f(u) – f(v) < 0 puis f(u) < f(v)

Donc  f est strictement croissante sur [0 ; + \infty [.

Si a est négatif, alors a  < 0  et comme  u – v < 0, on déduit que  f(u) – f(v) > 0 puis f(u) > f(v)

Donc  f est strictement croissante sur [0 ; + \infty [.

Si a = 0 alors f(u) = b pour tout u et f est constante.

IV La fonction carrée

Définition :
Il s’agit de la fonction  f définie sur \mathbb{R} par  f(x) = x2.

1.Tracé point par point de la courbe représentative de f.

On peut alors tracer la courbe représentative de f.

La courbe représentative de f s’appelle une parabole.

2. Etude de la parité de f

Soit x\in\mathbb{R}, alors-x\in\mathbb{R}.

Comparer f(x) \,et \,f(-x)\, : \,f(-x) = (-x)^2 = x^2 = f(x).

On dit que  f est une fonction paire.

Graphiquement, cela signifie que les points M(x ; f(x))et M'(-x ; f(-x)) qui sont des points de la courbe représentative de f sont symétriques par rapport à l’axe des ordonnées.

La représentation graphique de f admet donc l’axe des ordonnées pour axe de symétrie.

3. Sens de variation de  f

D’après le graphique, on peut établir le tableau de variation de f.

x

 – \infty                0                     + \infty

f

             f est strictement croissante sur [0 ; + \infty [.f est strictement décroissante sur ] – \infty ; 0].

Par le calcul : Soient a et b deux nombres réels tels que a < b.

f(a) – f(b) = a² – b² = (a + b)(a – b)

Si a et b sont positifs ou nuls, alors  a + b > 0  et comme  a – b < 0, on déduit que  f(a) – f(b) < 0

Donc  f est strictement croissante sur [0 ; + \infty [.

Si a et b sont négatifs ou nuls, alors  a + b < 0  et comme  a – b < 0, on déduit que  f(a) – f(b) > 0

Donc  f est strictement décroissante sur ] – \infty ; 0].

V. La fonction inverse.

Définition :
Il s’agit de la fonction g définie sur \mathbb{R}^*= ] – \infty ; 0[ ∪ ]0 ; + \infty [ par g(x)=\frac{1}{x} .

1. Tracé point par point de la courbe représentative de g.

On peut alors tracer la courbe représentative de g.

La courbe représentative de g s’appelle une hyperbole.

2. Etude de la parité de g.

Propriété :

Soit x\in\mathbb{R} alors -x\in\mathbb{R}.Comparer g(x) et g(-x) : g(-x)=\frac{1}{-x}=-\frac{1}{x}=-g(x).

On dit que g est une fonction impaire.

Graphiquement, cela signifie que les points M(x ; g(x))et M'(-x ; g(-x)) qui sont des points de la courbe représentative de g sont symétriques par rapport à l’origine du repère.

La représentation graphique de g admet donc l’origine du repère pour centre de symétrie.

3. Sens de variation de g.

D’après le graphique, on peut établir le tableau de variation de g.

Tableau de variation

           g est strictement décroissante sur ]- \infty ; 0[ et sur ]0 ; + \infty [.

Démonstration :

si a et b sont deux réels non nuls tels que a < b.

g(a)-g(b)=\frac{1}{a}-\frac{1}{b}=\frac{b-a}{ab}

Si a et b sont strictement positifs, ab > 0 et comme b – a > 0, on déduit que g(a) – g(b) > 0

Donc g est strictement décroissante sur ]0 ; + \infty [.

Si a et b sont strictement négatifs, ab < 0 et comme b – a > 0, on déduit que g(a) – g(b) > 0

Donc g est strictement décroissante sur ]- \infty ; 0[.

3.6/5 - (15 votes)
Télécharger et imprimer ce document en PDF gratuitement :

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «généralités sur les fonctions et fonctions usuelles : cours de maths en 2de en PDF.» au format PDF.

Soyez le premier à commenter (Laisser un commentaire)

Votre email ne sera pas publié.





D'autres fiches similaires :

Des documents similaires à généralités sur les fonctions et fonctions usuelles : cours de maths en 2de en PDF. à télécharger ou à imprimer gratuitement en PDF avec tous les cours et exercices de maths du collège au lycée et post bac rédigés par des enseignants de l'éducation nationale.
Vérifiez si vous avez acquis le contenu des différentes leçons (définitions, propriétés et théorèmes) en vous exerçant sur des milliers de documents sur généralités sur les fonctions et fonctions usuelles : cours de maths en 2de en PDF. disponibles sur Mathovore et chacun de ces exercices dispose de son corrigé comme dans vos livres scolaires (Hatier, Nathan, Sesamaths, Bordas).


Inscription gratuite à Mathovore.  Mathovore c'est 13 944 304 cours et exercices de maths téléchargés en PDF.