Brevet de maths 2017 sujet 0

brevet 2017

Nouveau sujet de la nouvelle épreuve de mathématiques pour la session 2017 suite à la réforme du collège.

Ce sujet officiel est tiré du site Eduscol.

Exercice 1
Pour chacune des affirmations suivantes, dire si elle est vraie ou fausse en justifiant soigneusement la réponse.
1) Un sac contient 6 jetons rouges, 2 jetons jaunes et des jetons verts.
La probabilité de tirer un jeton vert vaut 0,5.
Affirmation : le sac contient 4 jetons verts.
2) En informatique, on utilise comme unités de mesure les multiples suivants de l’octet :
1Ko=10^3octets,  1Mo,=,10^6\,octets,  1,Go,=,10^9\,octets, 1To,=,10^{12}\,,octets,
où Ko est l’abréviation de kilooctet, Mo celle de mégaoctet, Go celle de gigaoctet, To celle de téraoctet.
On partage un disque dur de 1,5 To en dossiers de 60 Go chacun.
Affirmation : on obtient ainsi 25 dossiers.

3) Sur la figure codée ci-dessous, les points B, A et E sont alignés.
Affirmation : l’angle \widehat{EAC} mesure 137°.

4) Un verre de forme conique est complètement rempli.
On verse son contenu de sorte que la hauteur du liquide soit divisée par 2.
Affirmation : le volume du liquide est divisé par 6.

Exercice 2
Le marnage désigne la différence de hauteur entre la basse mer et la pleine mer qui suit.
On considère qu’à partir du moment où la mer est basse, celle-ci monte de 1/12 du marnage pendant la première heure, de 2/12 pendant la deuxième heure, de 3/12 pendant la troisième heure, de 3/12 pendant la quatrième heure, de 2/12 pendant la cinquième heure et de 1/12 pendant la sixième heure. Au cours de chacune de ces heures, la montée de la mer est supposée régulière.
1) À quel moment la montée de la mer atteint-elle le quart du marnage ?
2) À quel moment la montée de la mer atteint-elle le tiers du marnage ?

Exercice 3
Pour la fête d’un village on organise une course cycliste. Une prime totale de 320 euros sera répartie entre les trois premiers coureurs.
Le premier touchera 70 euros de plus que le deuxième et le troisième touchera 80 euros de moins que le deuxième.
Déterminer la prime de chacun des trois premiers coureurs.

Exercice 4

1) Pour réaliser la figure ci-dessus, on a défini un motif en forme de losange et on a utilisé l’un des deux programmes A et B ci-dessous.

programmes-scratch

Déterminer lequel et indiquer par une figure à main levée le résultat que l’on obtiendrait avec l’autre programme.

2) Combien mesure l’espace entre deux motifs successifs ?

3) On souhaite réaliser la figure ci-dessous :

Pour ce faire, on envisage d’insérer l’instructionbrique-scratch dans le programme utilisé à la question 1.

Où faut-il insérer cette instruction ?

Exercice 5
Pour régler les feux de croisement d’une automobile, on la place face à un mur vertical. Le phare, identifié au point P, émet un faisceau lumineux dirigé vers le sol.
On relève les mesures suivantes :
PA = 0,7 m, AC = QP = 5 m et CK = 0,61 m.
Sur le schéma ci-contre, qui n’est pas à l’échelle, le point S représente l’endroit où
le rayon supérieur du faisceau rencontrerait le sol en l’absence du mur.
On considère que les feux de croisement sont bien réglés si le rapport \frac{QK}{QP} est compris entre 0,015 et 0,02.
1) Vérifier que les feux de croisement de la voiture sont bien réglés.
2) À quelle distance maximale de la voiture un obstacle se trouvant sur la route est-il éclairé par les feux de croisement ?

Exercice 6
Un panneau mural a pour dimensions 240 cm et 360 cm. On souhaite le recouvrir avec des carreaux de forme carrée, tous de même taille, posés bord à bord sans jointure.
1) Peut-on utiliser des carreaux de : 10 cm de côté ? 14 cm de côté ? 18 cm de côté ?
2) Quelles sont toutes les tailles possibles de carreaux comprises entre 10 et 20 cm ?
3) On choisit des carreaux de 15 cm de côté. On pose une rangée de carreaux bleus sur le pourtour et des carreaux blancs ailleurs.

Combien de carreaux bleus va-t-on utiliser ?

Exercice 7
La distance de freinage d’un véhicule est la distance parcourue par celui-ci entre le moment où le conducteur commence à freiner et celui où le véhicule s’arrête. Celle-ci dépend de la vitesse du véhicule. La courbe ci-dessous donne la distance de freinage d, exprimée en mètres, en fonction de la vitesse v du véhicule, en m/s,sur une route mouillée.

courbe

1) Démontrer que 10 m/s = 36 km/h.
2) a. D’après ce graphique, la distance de freinage est-elle proportionnelle à la vitesse du véhicule ?
b. Estimer la distance de freinage d’une voiture roulant à la vitesse de 36 km/h.
c. Un conducteur, apercevant un obstacle, décide de freiner. On constate qu’il a parcouru 25 mètres entre le moment où il commence à freiner et celui où il s’arrête. Déterminer, avec la précision permise par le graphique, la vitesse à laquelle il roulait en m/s.
3) On admet que la distance de freinage d, en mètres, et la vitesse v, en m/s, sont liées par la relation d,=,0,14,v^2.
a. Retrouver par le calcul le résultat obtenu à la question 2b.
b. Un conducteur, apercevant un obstacle, freine ; il lui faut 35 mètres pour s’arrêter.

À quelle vitesse roulait-il ?

Vous pouvez télécharger le sujet du brevet de maths 2017   au format PDF.

Brevet 2017

5/5 - (5 votes)

Télécharger nos applications gratuites avec tous les cours,exercices corrigés.

Application Mathovore sur Google Play Store. Application Mathovore sur Apple Store.

D'autres fiches similaires à brevet de maths 2017 sujet 0.

Mathovore vous permet de réviser en ligne et de progresser en mathématiques tout au long de l'année scolaire.
De nombreuses ressources destinées aux élèves désireux de combler leurs lacunes en maths et d'envisager une progression constante. Tous les cours en primaire, au collège, au lycée mais également, en maths supérieures et spéciales ainsi qu'en licence sont disponibles sur notre sites web de mathématiques.
Des documents similaires à brevet de maths 2017 sujet 0 à télécharger ou à imprimer gratuitement en PDF avec tous les cours de maths du collège au lycée et post bac rédigés par des enseignants de l'éducation nationale.
Vérifiez si vous avez acquis le contenu des différentes leçons (définition, propriétés, téhorèmpe) en vous exerçant sur des milliers d'exercices de maths disponibles sur Mathovore et chacun de ces exercices dispose de son corrigé.
En complément des cours et exercices sur le thème brevet de maths 2017 sujet 0, les élèves de troisième pourront réviser le brevet de maths en ligne ainsi que pour les élèves de terminale pourront s'exercer sur les sujets corrigé du baccalauréat de maths en ligne.
  • 62
    Bac S de maths 2018 en France : sujet et corrigé à télécharger en PDF MATHÉMATIQUES - Série S - Enseignement Obligatoire Coefficient : 7 Durée de l’épreuve : 4 heures Exercice 1 (6 points) Commun à tous les candidats Dans cet exercice, on munit le plan d’un repère orthonormé. On a représenté ci-dessous la courbe d’équation : . Cette courbe est appelée une «…
  • 60
    France 2017 : sujet du brevet de maths avec son corrigé DIPLÔME NATIONAL DU BREVET SESSION 2017 PREMIÈRE ÉPREUVE 1ère partie MATHÉMATIQUES Série générale Durée de l’épreuve : 2 heures – 50 points THÉMATIQUE COMMUNE DE L’ÉPREUVE DE MATHÉMATIQUES-SCIENCES : L’ÉNERGIE Exercice 1 (4 points) Dans une urne contenant des boules vertes et des boules bleues, on tire au hasard une…
  • 60
    Bac s 2019 France : sujet et corrigé à télécharger en PDF BACCALAURÉAT GÉNÉRAL SESSION 2019 ÉPREUVE DU VENDREDI 21 JUIN 2019 MATHÉMATIQUES - Série S - Durée de l’épreuve : 4 heures L'usage de tout modèle de calculatrice, avec ou sans mode examen, est autorisé. Enseignement de Spécialité Coefficient : 9 Le sujet est composé de quatre exercices indépendants. Le candidat…
  • 59
    Brevet maths 2019 : sujet blanc pour réviser en ligne. Un sujet de brevet de maths 2019 blanc afin de permettre aux élèves de réviser en ligne et de se préparer dans les meilleures conditions pour les épreuves du DNB 2019 en mathématiques au collège. Exercice 1 : 20 points. Partie 1 On s’intéresse à une course réalisée au début…
  • 58
    SESSION 2019 MATHÉMATIQUES Série S Durée de l’épreuve : 4 heures Enseignement obligatoire – Coefficient : 7 Exercice 1 (4 points) Commun à tous les candidats Cet exercice est un questionnaire à choix multiples (Q.C.M.) qui envisage quatre situations relatives à une station de ski. Les quatre questions sont indépendantes.…


Retrouvez nos cours de maths et exercices corrigés sur notre chaîne YouTube.

Inscription gratuite à Mathovore.  Mathovore c'est 2 158 546 cours et exercices de maths téléchargés en PDF et 172 325 membres.
Rejoignez-nous : inscription gratuite.

A propos de webmaster 686 Articles
Webmaster du site Mathovore.