Sommaire de cette fiche
Les connaissances de collège nécessaires pour aborder cette leçons sont les suivantes :
- Calculer l’image d’un nombre par une fonction;
- Lire une image par une fonction sur un graphique;
- Reconnaître une fonction affine;
- Connaître les effets des opérations sur l’ordre des nombres.
I. Point de vue graphique
1. Fonction croissante, décroissante, constante
On dit que f est décroissante sur un intervalle I lorsque si x augmente sur I alors f (x) diminue.
Soit une fonction et
sa courbe représentative dans un repère.
On voit sur un graphique que :
- f est croissante sur I lorsque Cf «monte » sur I ;
- f est décroissante sur I lorsque Cf « descend » sur I.
- Lorsque sur un intervalle, la courbe est horizontale,on dit que la fonction est constante. On considère qu’elle est à la fois croissante et décroissante.
Une fonction qui ne change pas de sens de variations sur un intervalle est dite monotone sur cet intervalle.
2. Maximum et minimum d’une fonction
- le maximum d’une fonction f est la plus grande des valeurs prises par f (x) ;
- le minimum d’une fonction f est la plus petite des valeurs prises par f (x).
3. Tableau de variation d’une fonction et variations
Un tableau de variations regroupe toutes les informations concernant les variations d’une
fonction numérique sur son domaine de définition.
Méthode : dresser un tableau de variation
Un tableau de variations comporte deux lignes.
- Aux extrémités de la première ligne, on trouve les bornes du domaine de définition de la fonction.
Entre les bornes, on place d’éventuelles valeurs particulières. - Le sens de variation de la fonction est indiqué sur la deuxième ligne par une ou plusieurs flèches sur les intervalles où elle est monotone :
pour croissante et
pour décroissante.
- Les valeurs pour lesquelles la fonction n’est pas définie sont indiquées par une double
barre verticale sur la deuxième ligne. - On indique au bout des flèches les images des valeurs de la première ligne.
Exemple :
Dresser le tableau de variations de la fonction définie sur [−2; 2] par la courbe ci-dessous.
Voici le tableau de variation correspondant :
II. Point de vue algébrique
Variation d’une fonction
Soit f une fonction définie sur un intervalle I et et
deux nombres de I.
Si implique
alors f est dite croissante sur I.
Si implique
alors f est dite décroissante sur I.
La fonction inverse est décroissante sur
Tableau de variation des fonctions affines
Démonstration :
On considère une fonction f tel que f (x) = ax + b et deux nombres tels que .
Si et
. La fonction f est donc décroissante sur R.
Si et
. La fonction f est donc croissante sur R.
Tableau de variation de la fonction inverse
2. Maximum et minimum d’une fonction
- Dire que f admet un maximum en a sur l’intervalle I signifie que :
Il existe un réel M tel que pour tout x dans I : et
;
- Dire que f admet un minimum en b sur l’intervalle I signifie que :
Il existe un réel m tel que pour tout x dans I :et
;
- Un extremum est le terme générique pour désigner un maximum ou un minimum.
- La fonction carrée est décroissante sur
et croissante sur
.
- Elle admet, sur
, un minimum en 0.
Télécharger et imprimer ce document en PDF gratuitement
Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «variations de fonctions et extremums : cours de maths en 2de» au format PDF.
D'autres fiches similaires à variations de fonctions et extremums : cours de maths en 2de.
Mathovore vous permet de réviser en ligne et de progresser en mathématiques tout au long de l'année scolaire.De nombreuses ressources destinées aux élèves désireux de combler leurs lacunes en maths et d'envisager une progression constante. Tous les cours en primaire, au collège, au lycée mais également, en maths supérieures et spéciales ainsi qu'en licence sont disponibles sur notre sites web de mathématiques.
Des documents similaires à variations de fonctions et extremums : cours de maths en 2de à télécharger ou à imprimer gratuitement en PDF avec tous les cours de maths du collège au lycée et post bac rédigés par des enseignants de l'éducation nationale.
Vérifiez si vous avez acquis le contenu des différentes leçons (définition, propriétés, téhorèmpe) en vous exerçant sur des milliers d'exercices de maths disponibles sur Mathovore et chacun de ces exercices dispose de son corrigé.
En complément des cours et exercices sur le thème variations de fonctions et extremums : cours de maths en 2de, les élèves de troisième pourront réviser le brevet de maths en ligne ainsi que pour les élèves de terminale pourront s'exercer sur les sujets corrigé du baccalauréat de maths en ligne.
- 64
- 63
- 63
- 62
La série des problèmes ouverts de maths afin de réfléchir sur des exercices complexes avec un travail individuel ou en groupe.Ces exercices développe l'esprit d'initiative et le raisonnement scientifique pour les élèves du collège et du lycée. Une série de problèmes ouverts afin de développer la prise d'initiative et le…
- 61
Les dernières fiches mises à jour
Voici les dernières ressources mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.
- Quizz sur les nombres relatifs avec scratch
- Table de multiplication en ligne avec scratch
- Brevet Maths 2021 – Asie Pacifique – Sujet et corrigé en PDF
- Composition d’une musique de piano de Yiruma (River flows in you)
- Pavage avec des octogones et carrés avec Scratch
- Conseils pour réussir son brevet de maths 2017
- Brevet Maths 2021 Centres étrangers : sujet et corrigé du brevet
- Brevet Amérique du Nord 2021 maths : sujet et corrigé en PDF.
- Les équations : cours de maths en 4ème en PDF.
- Bac Maths 2021 : sujet et corrigé du baccalauréat Maths 2021
Rejoignez-nous :
inscription gratuite.