Cours maths 3ème

Racine carrée : cours de maths en 3ème

Un cours de mathématiques sur les systemes d’équations du premier degré à deux inconnues.Méthode par combinaison linéaire( dite par addition) et méthode par substition et graphique.Résolution de problème mathématique amenant à résoudre un système de deux équations à deux inconnues.

 

I. Racine carrée d’un nombre positif :

Définition :

La racine carrée d’un nombre positif  a est le nombre positif noté \sqrt{a} dont le carré est  a . c’est à dire :  (\sqrt{a})^2=a

Remarques :

15$ \sqrt{ .} s’appelle le radical et  \sqrt{a} se lit « racine carrée de a » ou « racine de a ».

 \sqrt{a} n’a pas de sens si a est un nombre négatif.

 

Exemples :

1)  \sqrt{144}=12 car 12 est positif et 12²=144.

2)  \sqrt{0}=0car 0² = 0.

3)  \sqrt{-4}=0 n’a pas de sens car –4 est un nombre négatif.

Définition :

On appelle carré parfait un entier positif dont la racine carrée est un entier.

Exemples :

1) 16 est un carré parfait car 16 = 4², et  \sqrt{16}=4 .

2) 40 000 est un carré parfait car 40 000 = 200², et  \sqrt{40\,000}=200

II. Règles de calculs sur les radicaux :

1. Produit de racines :

Propriété 1:

Pour tous nombres a et b positifs , on a : \fbox{ \sqrt{a\times b}=\sqrt{a}\times \sqrt{b}}

Exemples :

1.  \sqrt{15}=\sqrt{5\times 3}=\sqrt{5}\times \sqrt{3} 2.  \sqrt{8}=\sqrt{4\times 2}=\sqrt{4}\times \sqrt{2}=2sqrt{2} 3.  \sqrt{49\times 81}=\sqrt{49}\times \sqrt{81}=7\times 9=63

propriété 2 :

Pour tout nombre positif a, on a \fbox{ (\sqrt{a})^2=\sqrt{a^2}=a}

Preuve :

Par définition : (\sqrt{a})^2=a

En utilisant la propriété 1 : \sqrt{a^2}=\sqrt{a\times a}=\sqrt{a}\times \sqrt{a}=(\sqrt{a})^2=a

Exemples :

 \sqrt{144}=\sqrt{12^2}=12

 \sqrt{162}=\sqrt{2\times 81}==\sqrt{2}\times \sqrt{ 81}=9\sqrt{2} .

Attention :

Il n’y a aucune règle générale pour la somme et la différence de radicaux !

Contre-exemples :

1.  \sqrt{16}+\sqrt{9}=\,4+3=7\,\,\sqrt{16+9}=\sqrt{25}=5

donc  \sqrt{16+9}\neq\sqrt{16}+\sqrt{9}

2.  \sqrt{100}-\sqrt{64}=10-8=2

 \sqrt{100-64}=\sqrt{36}=6

donc  \sqrt{100-64}\neq\sqrt{100}-\sqrt{64}

2. Quotient de racines :

Propriété :

Pour tous nombres a et b positifs , on a : \fbox{ \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{ \sqrt{b}}

Exemples :

 \sqrt{\frac{81}{64}}=\frac{\sqrt{81}}{ \sqrt{64}}=\frac{9}{8}

 \sqrt{\frac{72}{36}}=\frac{\sqrt{72}}{ \sqrt{36}}=\frac{\sqrt{9\times 8}}{6}=\frac{\sqrt{9}\times \sqrt{8}}{6}=\frac{3\sqrt{8}}{6}


Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «racine carrée : cours de maths en 3ème» au format PDF.




Les dernières fiches mises à jour

Voici les dernières ressources mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

Des cours et exercices corrigés en 3ème en vidéos

Concours : gagnez une calculatrice TEXAS INSTRUMENT (TI)

Nouveau concours avec une calculatrice Texas Instrument à gagner.
Le tirage au sort sera effectué avec un logiciel de manière aléatoire chaque début de mois et les résultats seront annoncés sur notre page facebook.
Les gagnants seront tirés au sort parmi les bonnes réponses de nos abonnés de notre nouvelle chaîne Youtube.


je participe au tirage au sort en m'abonnant à la chaîne YouTube Je participe au concours afin de gagner la calculatrice.

Inscription gratuite à Mathovore.  Mathovore c'est 1 576 944 cours et exercices de maths téléchargés en PDF et 147 922 membres.
Rejoignez-nous : inscription gratuite.

Mathovore

GRATUIT
VOIR