Les fonctions numériques : cours de maths en 2de

cours maths 2de
Les fonctions numériques dans un cours de maths en 2de ou nous aborderons le vocabulaire et la définition ainsi que la représentation graphique d’une fonction. Dans cette leçon en seconde, nous étudierons l’image, l’antécédent et la résolution graphique d’équations ainsi que l’étude de tableaux de signe et du sens de variation et des extremums d’une fonction.

I. Définir une fonction numérique :

1. Ensemble R et intervalles :

Définition :

L’ensemble des abscisses des points d’une droite graduée est appelé l’ensemble des nombres réels.

On note \mathbb{R} l’ensemble de tous ces nombres.

Certaines parties de \mathbb{R} sont appelées des intervalles; on les note en utilisant des crochets.

Ensemble des réels x tels que :   Intervalle
x<b     ]-\infty;b[
x\geq\, a      [a;+\infty[
a\leq\, x\leq\, b        [a;b]
a<x< b        ]a;b[
a\leq\, x< b      [a;b[

On définit de la même façon les intervalles ]a;b]]a;+\infty[ et ]-\infty,b].

2. Vocabulaire des fonctions numériques :

Définition :

Définir une fonction f sur une partie D de \mathbb{R}, c’est associer à tout nombre de D, un nombre unique appelé image du nombre x.

Définition et vocabulaire :
  • L’image du nombre x par la fonction f est notée f(x).
  • La fonction f est parfois notée
  • On dit que D est l’ensemble de définition de f.
  • Si f(a)=b, on dit que a est un antécédent de b par f ou que b est l’image de a par f.

Exemple 1 : Une fonction définie par un graphique.

L’ensemble de définition de f est l’intervalle [- 7;2].

Le nombre – 5 a pour image 2 donc f(- 5 ) = 2.

Exemple 2 : une fonction g définie par un tableau de valeurs.

Le nombre 0 a une seule image 1.

g(-1)=4 et g(3)=4 donc des antécédents de 4 par g sont -1 et 3.

Nombre x – 4 – 1 0 2 3
Image g(x) 5 4 1 2 4

Exemple 3 : une fonction h définie par une formule algébrique.

La fonction h associe à un nombre réel x quelconque, le nombre h(x)=2x^2-3.

L’ensemble de définition de h est \mathbb{R}.

Pour calculer l’image de – 5, on remplacex par – 5 dans l’expression de h(x) :

h(-5)=2\times   (-5)^2-3=47.

II. Courbes et résolutions graphiques :

1. Courbe représentative d’une fonction :

Définition :

f est une fonction définie sur D. Dans un repère du plan, la courbe représentative (ou représentation graphique)  \zeta de f est l’ensemble des points M(x;y) dont:

  • l’abscisse x décrit l’ensemble de définition D;
  • l’ordonnée y est l’image de x par f.

Autrement dit: M(x;y) \in \zeta si, et seulement si, x \in D et y=f(x).

Vocabulaire :

On dit que \zeta a pour équation y=f(x) dans le repère choisi.

Exemple  :

f est la fonction définie sur \mathbb{R} par f(x)=-x^2+2x.

Voici la courbe représentative de cette fonction :

Le point A(2;0) appartient-il à la courbe ?

oui car f(2)=-2^2+2\times   2=0.

Le point B(- 2 ; – 7) appartient-il à la courbe ?

Non car f(-2)=-(-2)^2+2\times   (-2)=-8\neq -7.

2. Résolution graphique d’équations :

Cf et Cg sont les courbes représentatives des fonctions f et g dans un repère.

a. Equations f(x)=k (avec k un réel) :

Propriété:

Les solutions de l’équation f(x)=k sont les abscisses des points d’intersection de la courbe Cf et de la droite y=k.

b. Equations f(x)=g(x)

Propriété:

les solutions de l’équation f(x)=g(x) sont les abscisses des points d’intersection des courbes Cf et Cg.

III. Sens de variation et extremums :

f est une fonction définie sur un intervalle I, de courbe représentative Cf dans un repère du plan.

1. Fonction croissante :

Définition :

Dire que f est croissante sur I signifie que pour tout nombre réel u et v de I, si u\leq\, v alors f(u)\leq\, f(v).

2. Fonction décroissante :

Définition :

Dire que f est décroissante sur I signifie que pour tout nombre réel u et v de I, si u\leq\, v alors f(u)\geq\, f(v).

3. Extremum : maximum et minimum.

a. Maximum d’une fonction :

Définition :

a désigne un nombre réel de l’intervalle I. Dire que f(a) est le maximum de f sur I signifie que, pour tout réel x de I : f(x)\leq\, f(a).

b. Minimum d’une fonction :

Définition :

a désigne un nombre réel de l’intervalle I. Dire que f(a) est le minimum de f sur I signifie que, pour tout réel x de I : f(x)\geq\, f(a).

Vocabulaire :

On dit que f(a) est un extremum de f sur I pour indiquer que f(a) est un maximum ou un minimum de f sur I.

4.4/5 - (22 votes)

Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «les fonctions numériques : cours de maths en 2de» au format PDF.




Télécharger nos applications gratuites avec tous les cours,exercices corrigés.

Application Mathovore sur Google Play Store. Application Mathovore sur Apple Store.

D'autres fiches similaires à les fonctions numériques : cours de maths en 2de.

Mathovore vous permet de réviser en ligne et de progresser en mathématiques tout au long de l'année scolaire.
De nombreuses ressources destinées aux élèves désireux de combler leurs lacunes en maths et d'envisager une progression constante. Tous les cours en primaire, au collège, au lycée mais également, en maths supérieures et spéciales ainsi qu'en licence sont disponibles sur notre sites web de mathématiques.
Des documents similaires à les fonctions numériques : cours de maths en 2de à télécharger ou à imprimer gratuitement en PDF avec tous les cours de maths du collège au lycée et post bac rédigés par des enseignants de l'éducation nationale.
Vérifiez si vous avez acquis le contenu des différentes leçons (définition, propriétés, téhorèmpe) en vous exerçant sur des milliers d'exercices de maths disponibles sur Mathovore et chacun de ces exercices dispose de son corrigé.
En complément des cours et exercices sur le thème les fonctions numériques : cours de maths en 2de, les élèves de troisième pourront réviser le brevet de maths en ligne ainsi que pour les élèves de terminale pourront s'exercer sur les sujets corrigé du baccalauréat de maths en ligne.
  • 63
    Dérivée d'une fonction : cours de maths en 1ère S La dérivée d'une fonction dans un cours de maths en 1ère S où l'on  retrouvera la dérivée en un point et la signification concrète du nombre dérivée et de l'équation de la tangente en un point. Dans cette leçon en première S, nous aborderons la dérivée d'une somme, d'un produit…
  • 62
    Dérivée d'une fonction : cours en première S Cours de mathématiques sur la dérivation d'une fonction.On y retrouvera la dérivée en un point et la signification concrète du nombre dérivée et de l'équation de la tangente en un point.La dérivée d'une somme, d'un produit et d'un quotient.La dérivée et le sens de variation d'une fonction.Ainsi que les dérivées…
  • 61
    Fonctions : exercices de maths en 2de corrigés en PDF. Des exercices en seconde (2de) sur les généralités sur les fonctions. L'intégralité de ces fiches d'exercices sont corrigés. Exercice n° 1 : Etablir le tableau de signe des expressions algébriques suivantes : a. b. c. Exercice n° 2 : 1. Etablir le tableau de signe de l'expression algébrique suivante :…
  • 60
    Calcul littéral : correction des exercices en troisième Développer avec les identités remarquables, exercices corrigés de mathématiques en troisième (3ème) sur les identités remarquables. Exercice: Développer en utilisant les identités remarquable : Exercice : On considère les expressions E = x² − 5x + 5 et F = (2x − 7)(x − 2) − (x − 3)² .…
  • 59
    Notion de fonction : cours de maths en 3ème Les généralités et la notion de fonction numérique dans un cours de maths en 3ème où nous aborderons la notion de fonction avec la définition de l'image et de l'antécédent ainsi que le tableau de valeurs et la courbe représentative d'une fonction dans cette leçon en troisième. I. Notion de…


Retrouvez nos cours de maths et exercices corrigés sur notre chaîne YouTube.

Inscription gratuite à Mathovore.  Mathovore c'est 2 154 363 cours et exercices de maths téléchargés en PDF et 172 157 membres.
Rejoignez-nous : inscription gratuite.

A propos de webmaster 686 Articles
Webmaster du site Mathovore.