exercices maths 1ère

Dérivée d’une fonction : exercices en 1ère corrigés | Première.


Des exercices sur la dérivée d’une fonction et de l’interprétation graphique du nombre dérivée en 1ère dont toute la correction est détaillée.

Exercice 1 :

Dériver la fonction f dans les cas suivants :

1.  f(x)=-4x^3+2x^2-3x+1 .

2.  f(x)=\frac{3x^2-4x+2}{2} .

3.  f(x)=(\sqrt{x+1})\times   (x^2-2) .

4.  f(x)=(2x-\sqrt{x})\times   (x+4) .

5.  f(x)=\frac{1}{1-4x} .

6.  f(x)=\frac{-3}{2x-1} .

7.  f(x)=\frac{2x-1}{3x+2} .

8.  f(x)=\frac{3x^2-4x+1}{2x-3} .

9.  f(x)=(5x^2+1)^2 .

10.  f(x)=(-2x-1)^3 .

11.  f(x)=\sqrt{3x-4}.

12.  f(x)=2x\sqrt{-3x+2}.

Exercice 2 :

Determiner une equation de la tangente T à la courbe representative de la fonction f au point d’abscisse a dans les cas suivants :

1. f(x)= 3x²-x+1 avec a= -1.

2.  f(x)=\frac{2x-1}{x-2} avec a= 3.

3.  f(x)=\frac{\sqrt{x}}{x} avec a= 9.

Exercice 3 :

Soit f la fonction définie sur \mathbb{R^*} par :

 f(x)=\frac{-x^2+2x-1}{x} .

On note C sa courbe representative dans un repère orthonormé .
1. Determiner les abscisses des points de la courbe C où la tangente est horizontale .
2. Existe-t-il des points de la courbe C où la tangente admet un coefficient directeur égal à – 2 ?

3 Determiner les abscisses des points de la courbe C où la tangente est parallèle à la droite d’équation  y=- \frac{2}{3}x-5.

Exercice 4 – Equation de la tangente à une courbe représentative

Soit f la fonction définie sur R par f(x) = x^4 -2x + 1.
Soit (Cf ) sa courbe représentative.

1. Donner, en justifiant, l’équation de la tangente (T) à la courbe (Cf ) au point A d’abscisse 0.

2. Tracer dans un même repère la courbe (Cf ) et la tangente (T) sur l’intervalle [- 1 ; 1,5].

Dérivée d'une fonction

Exercice 5 – Calculer une limite

Le but de cet exercice est de calculer la limite suivante :

\lim_{h \to 0}\frac{(1+h)^{2005}-1}{h}.

Pour cela on considère la fonction f définie sur \mathbb{R} par f(x)=(1+x)^{2005}.

1. Calculer la dérivée f’ de la fonction f. Calculer f ‘ (0).

2. Calculer l’accroissement moyen de la fonction f entre 0 et h. En déduire la limite ci-dessus.

Exercice 6 – Prix de revient et vitesse d’un camion

Un camion doit faire un trajet de 150 km.
Sa consommation de gasoil est de 6+\frac{v^2}{300}  llitres par heure, où v désigne sa vitesse enkm/h.
Le prix du gasoil est de 0,9 €  le litre et on paie le chaufeur 12 € par heure.

1. Soit t la durée du trajet en heure. Exprimer t en fonction de la vitesse v.

2.  Calculer le prix de revient P(v) du trajet en fonction de v.

3.  Quel doit être la vitesse v du camion pour que le prix de revient P(v) de la course soit minimal ?

camion

Exercice 7 – Sommet d’une parabole

Soit (P) la parabole définie par la fonction f(x) = x^2 - 3x + 1.
Calculer les coordonnées de son sommet S.

Sommet d'une parabole

Exercice 8 – Etude d’un rectangle

On considère un rectangle dont le périmètre P est égal à 4 cm.

1. Déterminer ses dimensions (longueur L et largeur l) sachant que son aire S est égale à \frac{3}{4}  cm².

2.  On recherche maintenant les dimensions du rectangle de façon que son aire S soit maximale.

a. Exprimer S en fonction de la largeur  l.

b. On considère la fonction f définie sur \mathbb{R} par f(x)=x(2-x).

Calculer la dérivée f’ de f puis étudier son signe.

Dresser le tableau de variations de la fonction f.

Tracer la représentation graphique (Cf ) de la fonction f sur [0 ; 2].

c.  En déduire les dimensions du rectangle dont le périmètre P est égal à 4 m et l’aire S est maximale.

Courbe d'une fonction

Exercice 9 – Fonction numérique et racine

On considère la fonction f définie sur R par : f(x) = x^3 - 3x - 3.
On note (Cf ) sa représentation graphique.

1.Calculer la dérivée f ‘ de f puis étudier son signe.

2. Dresser le tableau de variations de la fonction f.

3.  Déterminer une équation de la tangente (T) à (Cf ) au point d’abscisse 0.

4. Tracer (T) et (Cf ) dans un même repère.

5.  Démontrer que l’équation f(x) = 0 admet une solution unique \alpha dans l’intervalle [2 ; 3].

6. Donner une valeur approchée de \alpha, par défaut, à 10^{-1} près.

Fonction numérique et racine

Exercice 10 – Tableau de variation et équation

1.  Dresser le tableau de variations de la fonction f définie sur R par : f(x) = x^2 -3x + 2.
2.  Résoudre l’équation f(x) = 0.

Tableau de variation et équation

Exercice 11 – Etude de deux fonctions et des tangentes

On considère la fonction définie par f(x)=x^2-x-1.
On note (Cf ) sa courbe représentative.
On considère également la fonction g définie par g(x) = 3 – x.
On note (D) sa représentation graphique.

1. Calculer la dérivée f’ de f.

2.  Déterminer une équation de la tangente (T) à la courbe (Cf ) au point d’abscisse x_0=2.

3.  Résoudre par le calcul l’équation g(x) = f(x).

4.  Préciser les coordonnées des points d’intersections de (Cf ) et (D).

5. Tracer sur un même repère les droites (T), (D) et la courbe (Cf ).

Etude de deux fonctions et des tangentes

Exercice 12 – Déterminer la dérivée de fonctions numériques

Dériver les fonctions suivantes :

f(x)=4x^2-3x+1\\g(x)=(2x+3)(3x-7)\\h(x)=\frac{2x+4}{3x-1}\,pour\,x\neq\frac{1}{3}\\k(x)=(2x^2+3x+1)^2

Exercice 13 – Dérivée de plusieurs fonctions

Dériver les fonctions suivantes :

f(x)=x^2\\g(x)=3x^4-2x^3+5x-4\\h(x)=\sqrt{x}(1-\frac{1}{x})\\k(x)=\frac{x+5}{x^2+1}

Exercice 14 – Valeur absolue et dérivabilité

Soit f une fonction définie sur \mathbb{R} par f(x)= | 2x+3  | .

Etudier la dérivabilité de f sur \mathbb{R} .

Exercice 15 – Dérivée d’une fonction puissance

Démontrez que si u est une fonction dérivable sur un intervalle I, alors:

a) u2 est dérivable sur I et (u2)’=2uu’.

b) u3 est dérivable sur I et (u3)’=3u2u’.

Exercice 16 –  Sens de variation

On considère la fonction f définie par f(x)=x(1-x) sur \mathbb{R}.

1. Démontrer que f(x)\leq\,,\frac{1}{4}  pour tout x appartenant à \mathbb{R}.

2. En déduire que la fonction f admet un maximum  en x=\frac{1}{2}.

3. Démontrer que f(x)=\frac{1}{4}-,(,x-\frac{1}{2},,)^2.

4. En déduire que la fonction f est croissante sur l’intervalle ]-\infty;\frac{1}{2}[ et décroissante sur ]\frac{1}{2};+\infty[.

Exercice 17

Soit la fonction  f définie sur  \mathbb{R} par  f(x)=x^2+6x+5

1. Etudier les variations de  f sur  \mathbb{R} .

2. Déterminer les coordonnées des points d’intersection entre la courbe représentative de  f et la droite  D d’équation  y=\frac{1}{2}x-2.

Exercice 18

Etudier les variations sur  \mathbb{R} de la fonction f définie par  f(x)=3x-4x^3 .

 Exercice 19

Soit f la fonction définie sur  \mathbb{R} par :

 f(x)=\frac{-4x-4}{x^2+2x+5}.

1. Etudier les variations de f sur  \mathbb{R} .

2. Déterminer les coordonnées du point A, intersection entre la courbe représentative de f et l’axe des abscisses .

3. Déterminer une équation de la tangente T à la courbe représentative de  f au point A.

Exercice 20

Etudier les variations sur ]-2 ; 1[ de la fonction  f définie par :

 f(x)=\frac{-5x^2+4x-8}{x^2+x-2} .

Exercice 21 – Courbe représentative, dérivée et tangente

Soit f  la fonction définie sur \mathbb{R} par f(x) = \frac{1}{4}x^4 -2x^2 + 3

On appelle C_f  sa représentation graphique dans un repère orthonormal.

1)        a) Etudier la parité de f. Que peut-on en déduire pour C_f ?

b) Déterminer l’expression de la fonction dérivée de f et en déduire le tableau de variation de f

2)        a) Déterminer une équation de la tangente à C_f  au point d’abscisse 1.

b) Cette tangente recoupe C_f  en deux autres points.

b.1) Montrez que les abscisses de ces points sont les solutions de l’équation :

x^4-8x^2 + 12x -5 = 0

b.2) Vérifiez que l’on a :

x^4 -8x^2 + 12x -5 = (x - 1)^2(x^2 + 2x - 5)

b.3) En déduire les abscisses de ces points.

Exercice 22 – Parabole et tangentes

Soit (P) la parabole d’équation y=x^2-3x+\frac{5}{4}

et (H) l’hyperbole d’équation y=\frac{3(3x+5)}{4(x+3)}.

Le plan est ramené à un repère orthonormal.

1) Montrer que (P) et (H) rencontrent l’axe (Oy) en un même point A.

2) Montrer que les tangentes en A aux courbes (P) et (H) sont perpendiculaires.

Rappel : Dans un r.o.n deux droites sont perpendiculaires si et seulement si le produit de leur coefficient directeur est égal à –1 .

Exercice 23 – Tangente et déterminer un réel

Déterminer le réel m pour que la courbe d’équation y = (m - 1) x^2 + ( 3m + 2) x + 4

admette au point d’abscisse –1 une tangente de coefficient directeur 6.

Exercice 24 – Déterminer l’abscisse d’une tangente

Soit la fonction f:x \mapsto   \frac{-x^2 +2x-1}{x} définie sur \mathbb{R}^* et soit (C) sa courbe représentative.

Déterminer les abscisses des points de (C) où la tangente :

1)       est horizontale

2)      est parallèle à la droite d’équation y=-\frac{2}{3}x-5.

Exercice 25 – Retrouver l’expression d’une fonction carrée

Une parabole (P) admet dans un repère (O;\vec{i},\vec{j}) une équation du type :

y=ax^2+bx+c\,(a\neq0)
1. Déterminer les coefficients a, b et c sachant que (P) coupe l’axe des abscisses au point A d’abscisse 3, l’axe des ordonnées au point B d’ordonnée 2 et qu’elle admet en ce point la droite d’équation y = 2x + 2 pour tangente.

2. Indiquer l’abscisse du second point d’intersection de (P) avec (Ox).

Courbe parabole et dérivée d'une fonction

Exercice 26 – Nombre dérivée et tangente à une courbe

(C) représenter une fonction dérivable sur \mathbb{R} et la droite T est tangente à (C) au point d’abscisse a.

Dans chaque cas détermine f'(a)et donner une équation de la tangente T.

Nombre dérivée et tangente à une courbe

Exercice 27 – Equation de tangente à une parabole
On considère la fonction f définie par :
f(x) = ax^2 + bx + c

dont la parabole (Cf ) passe par les points A (0 ; 1) et B (2 ; 3).

Les tangentes en A et B se coupent au point C (1 ; – 4).

1.  Déterminer une équation des tangentes à (Cf ).

En déduire f ‘ (0) et f ‘ (2).

2.  Exprimer f ‘ (x) en fonction de a, b et c.

3. A l’aide des valeurs de f ‘ (0), f ‘ (2) et f(0), trouver trois équations vérifiées par a, b et c puis déterminer l’expression algébrique de la fonction f.

Courbe fonction

Exercice 28 – Limite en l’infini et tableau de variation
On considère la fonction f définie sur\mathbb{R} par f(x)=\frac{x}{x^2+1} .

1. Calculer les limites de f en +\infty et en -\infty.

2. Calculer la dérivée f  » de f et étudier son signe.

3. Dresser le tableau de variation de la fonction f.

Dérivée d'une fonction

Exercice 29 – Lecture graphique
Ci-dessous est donnée la courbe (Cf ) représentant une fonction f définie et dérivable sur l’intervalle [2 ; 7].

1. Par lecture graphique, donner sans justifier la valeur de :

f(3) ; f ‘ (3) ; f(6) ; f ‘ (6).

2.  Le graphique ne permet pas la lecture de f ‘ (4).
Préciser néanmoins son signe. Expliquer.

Dérivée d'une fonction

Exercice 30 – Calcul d’une dérivée et tableau de variation
Soit f la fonction définie sur \mathbb{R} par f(x) = -x^3 - 3x^2 + 9x.

1. Calculer la dérivée f' et étudier son signe.

2. Dresser le tableau de variations de la fonction f.

Dérivée d'une fonction

Exercice 31 – Lecture graphique du nombre dérivé

Sur le graphique ci-dessous sont représentées la courbe (Cf ) de la fonction f définie sur\mathbb{R} par :

f(x)=(1-\frac{x}{2})^4  ainsi que la tangente (T) à (Cf ) au point d’abscisse x_0=4.

1. Donner, par lecture graphique, et sans justifications, la valeur du nombre f ‘ (4).

2. Déterminer, à l’aide du calcul de la dérivée de f, la valeur du nombre f ‘ (3).

Dérivée d'une fonction

Exercice 32 – Dérivabilité en un point

Soit f la fonction définie sur  \mathbb{R}^*par  f(x)=\frac{1}{x}+2 .

1. Montrer que f est dérivable en 2.

2. Déterminer une équation de la tangente (T) à la courbe (Cf ) représentant f au point d’abscisse 2.

Dérivabilité en un point

Exercice 33 – Calcul de dérivée et du nombre dérivé

1. Dériver les fonctions f et g définies ci-dessous :

f(x)=\frac{x}{x+\sqrt{x}}\,sur\,]0;+\infty[

g(x)=(\frac{1}{1+x})^3\,sur\,\mathbb{R}-\{-1}

2.  Calculer f ‘ (16) et g ‘ (2).

Exercice 34 – Sens de variation et encadrement
1. Etudier le sens de variation de la fonction f définie sur \mathbb{R} par :f(x)=x(1-x).

2. En déduire un encadrement de f(x) sur [0 ; 2].

Sens de variation et encadrement

Exercice 35 – Etude d’une fonction numérique
On considère la fonction f définie sur\mathbb{R}^* par f(x)=x-2+\frac{4}{x}.

1.  Calculer la dérivée f ‘ et étudier son signe.

2.  Dresser le tableau de variations de la fonction f.

3. Tracer la représentation graphique (Cf ) de la fonction f sur[-4 ; 0[\cup ]0 ; 4].

Etude d'une fonction numérique

Corrigé des exercices de maths.

4.1/5 - (2414 votes)
Télécharger et imprimer ce document en PDF gratuitement :

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «dérivée d'une fonction : exercices en 1ère corrigés | Première.» au format PDF.

Vous devez vous inscrire ou vous connecter à votre compte afin de pouvoir télécharger ce document au format PDF.



Inscription gratuite à Mathovore.  Mathovore c'est 13 793 683 cours et exercices de maths téléchargés en PDF.