Exercices maths 1ère

Les suites : exercices Maths 1ère corrigés en PDF

Les suites numériques avec des exercices de maths en première S   en ligne pour progresser en mathématiques au lycée.

Résoudre une équation à l’aide de suites

Résoudre l’équation :
\frac{1}{x}+\frac{1}{x^2}+...+\frac{1}{x^8}=0
Indication : calculer la somme puis remarquer que si x est solution alors x < 0.

Corrigé de cet exercice

Somme de carrés

Calculer la somme suivante :
S = 1^2 - 2^2 + 3^2 -4^2 + 5^2 - 6^2 +.... + 2 005^2 - 2 006^2.
Indication : regrouper les termes par deux.

Corrigé de cet exercice

Somme des entiers pairs et impairs

Calculer les sommes suivantes :

 I_n = 1 + 3 + 5 +...+(2n - 1) somme des   premiers entiers naturels impairs.
P_n = 2 + 4 + 6+... + 2n somme des   premiers entiers naturels pairs.

Corrigé de cet exercice

Etude d’une suite numérique

Soit (U_n) la suite définie par :

  U_n = n^4 - 6n^3 + 11n^2 - 5n.
1.  Calculer U_0,U_1,U_2,U_3..
2. La suite (U_n) est-elle arithmétique ?

Corrigé de cet exercice

Suite arithmétique ou géométrique

On considère la suite(U_n)  définie par U_n = 2^n -n.
1. Calculer U_0,U_1,U_2.
2. La suite est-elle arithmétique ? Géométrique ?

Corrigé de cet exercice

Etude de deux suites

On considère les deux suites (U_n) et (V_n) définies pour tout n\in \mathbb{N} par :

U_n=\frac{3\times   2^n-4n+3}{2}\,et\,V_n=\frac{3\times   2^n+4n-3}{2} .

1. Soit (W_n) la suite définie par W_n=U_n+V_n .

Démontrer que (W_n) est une suite géométrique .

Corrigé de cet exercice

Suite géométrique, étude

On considère la suite géométrique (U_n) de premier terme U_1=1  et de raison q=-2 .

1. Calculer U_2,U_3,U_4.

2. Calculer U_{20} .

3. Calculer la somme S=U_1+U_2+U_3+...+U_{20} .

Corrigé de cet exercice

Racines carrées

Soit (U_n) la suite définie pour tout n par U_n=\sqrt{n+1}-\sqrt{n} .

1. A l’aide de votre calculatrice, calculer U_1,U_2,U_3,U_4,U_5,U_{100},U_{1000},U_{100000} .

Quelle conjecture peut-on faire sur le sens de variation de la suite ? Pour une éventuelle limite ?

2. Démontrer que pour tout n non nul,

U_n=\frac{1}{\sqrt{n+1}+\sqrt{n}} .

3. En déduire le sens de variation de la suite (U_n) .

4. En utilisant le résultat de la question 2., montrer que, pour tout entier naturel n non nul,

U_n\leq\, \frac{1}{2\sqrt{n}}.

5. En déduire que la suite (U_n) est convergente et préciser sa limite.

Corrigé de cet exercice

Etude d’une suite arithmétique

La suite (U_n) est arithmétique de raison r .

On sait que U_{50}=406 et U_{100}=806 .

1. Calculer la raison r et U_0.

2. Calculer la somme S=U_{50}+U_{51}+U_{52}+.....+U_{100} .

Corrigé de cet exercice

Calcul d’une somme de nombres

Calculer la somme suivante :

S=1+2+3+4+5+....+998+999

Corrigé de cet exercice

Représentation graphique d’une suite

On considère la suite(U_n) définie pour tout entier naturel non nul par la relation : U_n=3n-2.

 1.  Démontrer que la suite (U_n) est arithmétique de raison r que l’on précisera. Préciser son sens de variation.
2.  Représenter graphiquement la suite (U_n).
On se limitera aux cinq ou six premiers termes.

Corrigé de cet exercice

Déterminer une somme d’entiers

Calculer la valeur exacte de la somme :

S=1-2+4-8+16-32+...+4096.

Corrigé de cet exercice

Lecture de livre

Jean est en train de lire un livre.

En additionnant les numéros de toutes les pages qu’il a déjà lues, il obtient 351.
En additionnant les numéros de toutes les pages qu’il lui reste à lire, il obtient 469.
1.  A quelle page en est Jean ?
2.  Combien de pages comporte ce livre ?
Remarque : on supposera que le livre commence à la page n° 1.

Corrigé de cet exercice

Déterminer un nombre

Déterminer un nombre x tel que les trois nombres 25, x et 16 soient trois termes consécutifs d’une suite géométrique de raison négative.

Corrigé de cet exercice

Problème sur les suites numériques

Un étudiant loue une chambre pour 3 ans.
On lui propose deux type de bail :
 1er contrat :  un loyer de 200€  pour le premier mois puis une augmentation de 5 €  par mois jusqu’à la      fin du bail.

2ème contrat : un loyer de 200 €  pour le premier mois puis une augmentation de 2 % par mois jusqu’à la fin du bail.
1.  Calculer, pour chacun des deux contrats, le loyer du deuxième mois puis celui du troisième mois.
2.  Calculer, pour chacun des deux contrats, le loyer du dernier mois, c’est-à-dire du 36ème mois.
3.  Quel est le contrat globalement le plus avantageux pour un bail de 3 ans ? Justifier à l’aide de calculs.
Vocabulaire : un bail est un contrat de location.

Corrigé de cet exercice

Triangle rectangle

1. ABC est un triangle rectangle.
Son plus petit côté est 1 et les longueurs de ses côtés sont trois termes
consécutifs d’une suite arithmétique.
Déterminer ces longueurs.
2. ABC est un triangle rectangle.
Son plus petit côté est 1 et les longueurs de ses côtés sont trois termes
consécutifs d’une suite géométrique.
Déterminer ces longueurs.

Corrigé de cet exercice

Suite à double récurrence

On considère la suite (U_n) définie par récurrence par :

 \{ U_0=1\,et\,U_1=2\\U_{n+2} =6U_{n+1}-5U_n.

1. Calculer U_2,U_3,U_4.

2. Résoudre l’équation du second degré suivante : x^2 = 6x - 5.

3. Déterminer deux réels A et B tels que : U_n = A \times   5^n + B.

4. En déduire U_{10}.

Corrigé de cet exercice

Calculer la limite

Déterminer la limite de la suite (U_n) définie par :

U_n=\frac{3sin\,n+2cos\,n+5n}{n} pour tout n\in \mathbb{N}^* .

Corrigé de cet exercice

Etude d’une suite et démonstration par récurrence

On considère la suite (U_n) définie par récurrence par :

 \{ U_0=1\\U_{n+1}=\frac{1}{1+U_n} .

1. Calculer U_1,U_2,U_3.

2. Démontrer par récurrence que 0\leq\, U_n\leq\, 1 pour tout n\in \mathbb{N}.

Corrigé de cet exercice

Déterminer la valeur de deux expressions numériques

Calculer la valeur exacte des nombres suivants :

A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{38}

B=3+6+9+12+...+99

Corrigé de cet exercice

Suite arithmétique

On considère u(n) une suite arithmétique de raison r.

1°) Justifier que  u(3) = u(2) + r   et que   u(4) = u(3) + r

En déduire que  u(4) = u(2) + 2r

2°) Montrer que  u(8) = u(5) + 3r

3°) Quelle relation peut-on écrire entre u(7) , u(2) et r ?  Justifier.

4°) On suppose dans cette question que  u(0) = 4  et  r = 2.

Calculer  u(5) .

Donner sans démonstration la valeur de u(100)

Corrigé de cet exercice

Représentation graphique

On définit une suite (un) par :   un = 17 243 – 8n   pour tout entier n.

On a par exemple, en remplaçant n par 10 :       u10 = 17 243 – 8 x 10 = 17 163

1°) Calculer  u0  ;  u1  ;  u1990  ;  u1991  ;  u1992 .

2°) Calculer  u1 – u0   ;    u1991 – u1990   ;   u1992 – u1991

3°) En remplaçant n par n+1 dans l’expression de un  montrer que

     pour tout entier n :     un+1 = 17 235 – 8n

     En déduire que, pour tout entier n  :   un+1 – un = -8

4°) En utilisant la relation  un+1 – un = -8, c’est-à-dire  un+1 = un – 8  compléter le tableau suivant.

     La suite (un) est-elle une suite décroissante ?

n

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

un

1 323

5°) Représenter graphiquement la suite (un) lorsque n varie de 1990 à 2000.

Corrigé de cet exercice

Liste électorale

On donne, dans le tableau suivant, le nombre d’inscrits sur la liste électorale d’une petite commune pour les années de 1990 à 2000.

Année

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

Nombre d’inscrits

1323

1313

1304

1297

1288

1289

1281

1271

1258

1248

1243

1°) On note Pn le nombre d’inscrits sur la liste électorale pour l’année n.

     Donner la valeur de P1992   et  P1998

2°) Calculer  P1994 – P1993. Que représente ce nombre ?

     Calculer  P1995 – P1994. Que représente ce nombre ?

3°) Peut-on dire que la suite des nombres Pn est une suite décroissante lorsque n varie de 1990 à 2000 ?

4°) Représenter graphiquement la suite (Pn).

Corrigé de cet exercice

Etude d’un capital

On dispose d’un capital de C_0=1500 €.
Le 1er janvier 2000, on place ce capital sur un compte à intérêts composés de 3 % par an.
1. Calculer le capital C_1 obtenu au bout d’un an.
2. Calculer le capital C_7 obtenu au bout de 7 ans.
De quel pourcentage a augmenté le capital pendant ces 7 années ?
3. Combien d’années faut-il laisser cet argent sur le compte afin d’avoir un capital d’au moins 2 000 € ?

Corrigé de cet exercice

Suites numériques et pourcentages

Les rayons cosmiques produisent continuellement dans l’atmosphère du carbone 14 qui est un élément radioactif.
Durant leur vie, les tissus animaux et végétaux contiennent la même proportion de carbone 14 que l’atmosphère.
Cette proportion décroît après la mort du tissu de 1,14 % en 100 ans.
1. Déterminer les pourcentages de la proportion initiale de carbone 14 contenu dans le tissu au bout de 1 000 ans, 2 000 ans et 10 000 ans.
2. Exprimer le pourcentage de la proportion initiale de carbone 14 contenu dans le tissu au bout de k\times   10^3  annéees.
3. Un fossile ne contient plus que 10 % de ce qu’il devait contenir en carbone 14.
Donner une estimation de  son âge.

Corrigé de cet exercice

Problème

« Le premier jour du mois, je gagnai 2 centimes ;
le deuxième jour du mois, je gagnai 4 centimes ;
le troisième jour du mois, je gagnai 8 centimes ;
etc … : en doublant d’un jour à l’autre.
A la fin du mois, j’avais gagné environ un milliard de centimes !
C’était vers la fin des années soixante … »
En quelle année était-ce ?

Corrigé de cet exercice

Rémunération dans une entreprise

Une entreprise, propose pour recruter un nouvel employé deux types de rémunération :

Type 1 : Salaire initial de 1 200 € par mois avec augmentation annuelle du salaire mensuel de 100 €.

Type 2 : Salaire initial de 1 100 € par mois avec augmentation annuelle du salaire mensuel de 8%.

1°) Dans le cas de la rémunération de type 1, on note u(0) le salaire mensuel initial, et u(n) le salaire mensuel après n années. Donner les valeurs de u(0), u(1), u(2).

2°) Dans le cas de la rémunération de type 2, on note v(0) le salaire mensuel initial, et v(n) le salaire mensuel après n années. Donner les valeurs de v(0), v(1), v(2).

3°) Donner une expression générale de u(n) et v(n) en fonction de n.  Calculer u(5) et v(5) ; u(8) et v(8).

4°) Le nouvel employé compte rester 10 ans dans l’entreprise. Quelle est la rémunération la plus avantageuse ?

Corrigé de cet exercice

Population d’un village

Un village avait 3123 habitants en 1995.  Le nombre d’habitants diminue de 12% tous les ans.

On note P(n) le nombre d’habitants du village pour l’année n.

1°) Donner les valeurs de P(1995) et P(1996). (on arrondira à l’entier le plus proche)

2°) Justifier que la suite P(n) est une suite géométrique et donner sa raison.

3°) Calculer P(2001). (on arrondira à l’entier le plus proche)

4°) En quelle année le nombre d’habitants aura-t-il diminué des deux tiers par rapport à 1995 ?

5°) Représenter graphiquement la suite P(n) pour n variant de 1995 à 2005.

Corrigé de cet exercice

Suite géométrique

On considère v(n) une suite géométrique de raison q.

1°) Justifier que  v(3) = v(2) x q   et que   v(4) = v(3) x q

En déduire que  v(4) = v(2) x q2

2°) Montrer que  v(8) = v(5) x q3

3°) Quelle relation peut-on écrire entre v(7) , v(2) et q ?  Justifier.

4°) On suppose dans cette question que  v(0) = 3  et  q = 2.

Calculer  v(5) .

Donner sans démonstration la valeur de v(100) .

Corrigé de cet exercice

Capital et suites numériques

Un capital de 12 618 euros est placé le 01/01/2000 avec un taux d’intérêt annuel de 6,3%.

Tous les ans les intérêts sont cumulés au capital.

On note  C(0) le capital correspondant au 1er janvier de l’année 2000. On a donc C(0) = 12 618.

On note, pour tout entier n, C(n) le capital correspondant au 1er janvier de l’année 2000+n.

1°) Calculer  C(1), C(2), C(3).  (on arrondira les résultats au centime d’euro près)

2°) Démontrer que pour tout entier n on a   C(n+1) = C(n) x 1,063.

3°) Compléter le tableau suivant  (on arrondira les résultats au centime d’euro près)

Rang n de l’année

0

1

2

3

4

5

6

7

8

9

10

Capital  C(n)

12 618

4°) Représenter graphiquement la suite C(n).

Corrigé de cet exercice

Calcul du premier terme d’une suite arithmétique

Soit une suite (U_n) arithmétique et de raison r=8 et telle que U_{100}=650 .

Calculer la valeur du premier terme U_{0} .

Corrigé de cet exercice

Une suite récurrente qui est arithmétique

On considère la suite (U_n) définie par  \{ U_0=0\\U_{n+1 }=U_n+\frac{1}{2}. .

1. Calculer U_1\,,\,U_2\,,\,U_3.

2. Justifier que la suite (U_n) est une suite arithmétique dont on précisera la raison.

3. Que vaut U_{100} ?

Corrigé de cet exercice

Calcul d’une somme

On considère la suite (U_n) définie par U_n=(n+1)^2-n^2.

1. Calculer U_0\,,\,U_1\,,\,U_2.

2. La suite (U_n) est-elle arithmétique ? Si oui, préciser la raison.

3. Que vaut U_{99} ?

4. Calculer la somme S=1+3+5+7+9+...+195+197+199 .

Corrigé de cet exercice

Suite arithmétique et somme de termes

On considère (U_n)  définie par U_n=5-2n .

1. Calculer U_0\,,\,U_1\,,\,U_2.

2. Démontrer que (U_n) est une suite arithmétique dont on précisera la raison.

3. Que vaut U_{100} ?

Calculer S=U_0+U_1+U_2+...+U_{100}.

Corrigé de cet exercice

Suites arithmétiques et problème

Le triodule est une mauvaise herbe: il produit une seule graine pendant sa première année de croissance qu’il envoie assez loin de lui (celle-ci va germer au début de l’année suivante) et il se développe pour occuper la surface de 1m².
Les années suivantes, le pieds se contente d’augmenter sa surface de 1m².
La premère et unique graine de triodule est arrivée en 1800 et a germé au printemps 1801 sur l’île de Blécarre.

Questions:
1/ a) Quelles surface va occuper le pied de triodule à la fin de l’année?
b) Que va-t-il se passer en 1802?
c) Quelle surface va occuper le vieux pied de triodule à la fin de l’année 1802?

2/ Préparer une feuille de tableur:
Dans C2, écrire: =B2+1 ,puis à l’aide de la poignée de recopie, compléter les cellules de la ligne numéro 2.
Dans A4, écrire: =A3+1.
Dans B4, écrire: =B3+1.
Dans C4, écrire: =B3 ,puis recopier cette formule de 40 cellules vers la droite.
Enfin, recopier la ligne 4 vers le bas.

3/ Soit An, la surface occupée par tous les pieds de triodule à la fin de l’année 1800+n. On admet que chaque graine produite a développé un pied.

a) Donner la valeur de A0, A1 et A2 en insérant une nouvelle colonne dans le tableur.
b) Quelle est la surface du premier pied de triodule à la fin de l’année 1800+n?
c) Vérifier que l’on a An=1+2+3+….+n.
d) Donner en s’aidant de la feuille de calcul la surface occupée par tous les pieds de triodule au bout de 20 ans.
e) En quelle année la surface totale des pieds de triodule dépassera-t-elle 500m²?

Corrigé de cet exercice

Etude de la nature d’une suite

Etudier la nature des suites ci-dessous :

a)  pour tout entier naturel n, U_n=\frac{3}{4^n} .

b) pour tout entier naturel n, V_n=0,1-0,02n .

Corrigé de cet exercice

Suites numériques

On note (U_n) la suite définie par :  \{ U_0=1\,;\,U_1=3\\U_{n+2} =U_{n+1}-U_n .

1. Calculer U_3,U_4,U_5,....

2. Exprimer U_{n+3} en fonction de U_n .

3. Exprimer U_{n+6} en fonction de U_n .

4. En déduire l’expression de U_{n+3k};\,k\in\mathbb{N}, en fonction de U_{n }

(On ne démontrera pas l’égalité trouvée).

5. Calculer U_{2005} .

Corrigé de cet exercice


Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «les suites : exercices Maths 1ère corrigés en PDF» au format PDF.



Télécharger nos applications gratuites avec tous les cours,exercices corrigés Application Mathovore sur Google Play Store. Application Mathovore sur Apple Store.

.

Les dernières fiches mises à jour

Voici les dernières ressources mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

Des cours et exercices corrigés en 1ère en vidéos

Les fiches de cours et exercices de maths les plus consultées Concours : gagnez une calculatrice TEXAS INSTRUMENT (TI)

Nouveau concours avec une calculatrice Texas Instrument à gagner.
Le tirage au sort sera effectué avec un logiciel de manière aléatoire chaque début de mois et les résultats seront annoncés sur notre page facebook.
Les gagnants seront tirés au sort parmi les bonnes réponses de nos abonnés de notre nouvelle chaîne Youtube.


je participe au tirage au sort en m'abonnant à la chaîne YouTube Je participe au concours afin de gagner la calculatrice.

D'autres documents similaires

Inscription gratuite à Mathovore.  Mathovore c'est 1 603 693 cours et exercices de maths téléchargés en PDF et 149 016 membres.
Rejoignez-nous : inscription gratuite.

Mathovore

GRATUIT
VOIR