Sommaire de cette fiche
Les tableaux ci-dessous résument les résultats à connaître.
Ces tableaux sont valables dans les trois situations étudiées:
- Lorsque la variable
.
- Lorsque la variable
.
- Lorsque la variable
où a
R.
Mais il va de soi que, pour les deux fonctions f et g concernées, les limites sont prises au même endroit!
Dans le cas particulier où les fonctions sont des suites numériques, on peut utiliser ces résultats en remplaçant f par (Un) et g par (Vn) avec le seul cas envisageable la variable .
Les conventions utilisées dans ces tableaux, sont:
· et
désignent des nombres réels ( limites finies ).
· ? indique que dans la situation concernée, on n’a pas de conclusion générale.
On dit parfois qu’il s’agit d’une « forme indéterminée » notée F.I.
Il faudra dans ces cas, mettre au point d’autres méthodes de résolution.
I.Limite d’une somme de deux fonctions
II.Limite d’une différence de deux fonctions
Utiliser : f – g = f + (-g) et le tableau précédent.
III.Limite d’un produit de deux fonctions
IV.Limite de l’inverse d’une fonction
Dans le tableau ci-dessous, la limite de f égale à , signifie, qu’à l’endroit où la limite est prise, cette limite est zéro et que, pour tout x suffisamment proche de cet endroit, on a f(x) > 0.
Définition analogue pour , mais avec f(x) < 0.
V. Limite d’un quotient de deux fonctions
On peut utiliser: et avec les deux tableaux précédents, il est possible de conclure.
En + ou en –
, la limite d’une fonction rationnelle est la limite du quotient des termes de plus haut degré du numérateur et du dénominateur.
On peut aussi retenir les résultats suivants :
Ce tableau est simplifié: ± signifie +
ou bien –
.
Pour décider, on applique la règle du signe du quotient selon les signes de f et de g au voisinage de l’endroit où la limite est cherchée.
VI.Limite des fonctions de références.
VII.Le théorèmes de comparaison
Pour les fonctions, dans les propriétés ci-dessous, la lettre a désigne aussi bien un réel que + ou –
.
Lorsque a = + , les fonctions sont définies sur R ou un intervalle I de la forme [ A ; +
[ où A est un réel.
Lorsque a = – , les fonctions sont définies sur R ou un intervalle I de la forme ] –
; A ] où A est un réel.
Lorsque a R , les fonctions sont définies sur R ou un intervalle I de la forme [ A ; B ] où A et B sont des réels et a
[ A ; B ].
Si la limite concernée est la limite à gauche de a, les fonctions sont définies sur un intervalle I de la forme ] – ; a [ ou [ A ; a [ où A est un réel.
Si la limite concernée est la limite à droite de a, les fonctions sont définies sur un intervalle I de la forme ] a ; + [ ou ] a ; A ] où A est un réel.
Pour les suites, l’indice n est un entier naturel supérieur ou égal à un certain rang (qui sera souvent 0).
Télécharger et imprimer ce document en PDF gratuitement
Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «limites et asymptotes : cours de maths en 1ère S» au format PDF.
D'autres fiches similaires à limites et asymptotes : cours de maths en 1ère S.
Mathovore vous permet de réviser en ligne et de progresser en mathématiques tout au long de l'année scolaire.De nombreuses ressources destinées aux élèves désireux de combler leurs lacunes en maths et d'envisager une progression constante. Tous les cours en primaire, au collège, au lycée mais également, en maths supérieures et spéciales ainsi qu'en licence sont disponibles sur notre sites web de mathématiques.
Des documents similaires à limites et asymptotes : cours de maths en 1ère S à télécharger ou à imprimer gratuitement en PDF avec tous les cours de maths du collège au lycée et post bac rédigés par des enseignants de l'éducation nationale.
Vérifiez si vous avez acquis le contenu des différentes leçons (définition, propriétés, téhorèmpe) en vous exerçant sur des milliers d'exercices de maths disponibles sur Mathovore et chacun de ces exercices dispose de son corrigé.
En complément des cours et exercices sur le thème limites et asymptotes : cours de maths en 1ère S, les élèves de troisième pourront réviser le brevet de maths en ligne ainsi que pour les élèves de terminale pourront s'exercer sur les sujets corrigé du baccalauréat de maths en ligne.
- 59
- 55SESSION 2019 MATHÉMATIQUES Série S Durée de l’épreuve : 4 heures Enseignement obligatoire – Coefficient : 7 Exercice 1 (4 points) Commun à tous les candidats Cet exercice est un questionnaire à choix multiples (Q.C.M.) qui envisage quatre situations relatives à une station de ski. Les quatre questions sont indépendantes.…
- 54
- 52
- 51
Les dernières fiches mises à jour
Voici les dernières ressources mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.
- Table de multiplication en ligne avec scratch
- Brevet Maths 2021 – Asie Pacifique – Sujet et corrigé en PDF
- Composition d’une musique de piano de Yiruma (River flows in you)
- Pavage avec des octogones et carrés avec Scratch
- Conseils pour réussir son brevet de maths 2017
- Brevet Maths 2021 Centres étrangers : sujet et corrigé du brevet
- Brevet Amérique du Nord 2021 maths : sujet et corrigé en PDF.
- Les équations : cours de maths en 4ème en PDF.
- Bac Maths 2021 : sujet et corrigé du baccalauréat Maths 2021
- Brevet Maths 2022 : sujet et corrigé à télécharger en PDF
Rejoignez-nous :
inscription gratuite.