La fonction exponentielle : cours de maths en terminale en PDF.

cours de maths en terminale S Signaler une erreur sur cette page de Mathovore.Signaler une erreur / Remarque ? cours maths terminale
La fonction exponentielle avec un cours de maths en terminale où nous étudierons une première approche à l’aide des équations différentielles.
Puis nous verrons les différentes propriétés, les  définitions et limites usuelles de la fonction exponentielle et la courbe représentative de la fonction.

I . Equation différentielle f ’ = f avec f(0) = 1. :

Définition :

Une équation où figure une fonction et sa dérivée est une équation différentielle.

La résoudre sur un intervalle I, c’est trouver toutes les fonctions dérivables sur I qui vérifient l’égalité.

Ici, on cherche les fonctions f dérivables sur  \mathbb{R} telles que pour tout réel x :

f'(x)\,=\,f(x).

L’égalité f(0) = 1 est appelée condition initiale.

Propriété :

S’il existe une fonction f dérivable sur I telle que f'\,=\,f et f(0)\,=\,1 alors f ne s’annule pas sur I.

Théorème :

Il existe une unique fonction f dérivable sur I telle que f'\,=\,f et f(0)\,=\,1.

C’est la fonction exponentielle, notée exp.

II . Propriétés algébriques :

Théorème : >Relation fonctionnelle caractéristique.

La fonction exponentielle est la seule fonction dérivable sur I non nulle qui vérifie les conditions :

Pour tous réels a et b, f(a+b) = f(a).f(b)

f’(0) = 1

Propriétés :

Pour tous réels a et b et pour tout n entier relatif :

  1. \exp(-a)=\frac{1}{\exp(a)}
  2. \exp(a-b)=\frac{\exp(a)}{\exp(b)}
  3. \exp(n a)=(\exp(a))^n

Remarque :

Pour tout réel a :

\exp(a)=\exp(\frac{a}{2}+\frac{a}{2})=\exp(\frac{a}{2}).\exp(\frac{a}{2})=[\exp(\frac{a}{2})]^2>0

Donc pour tout réel a, exp(a)>0.

Notations :

\forall n \in \mathbb{N},\, \exp(n)=\exp(n\,\times  \,1)=(\exp(1))^n.

On pose :

 e=\exp(1)\,\, alors\,\,\exp(n)=e^n .

Par analogie avec les puissances (et leurs règles de calcul) on pose :

\fbox{\forall x\in \mathbb{R},\,\exp(x)=e^x .}

Propriétés :

\forall a, b\in \mathbb{R},

  1. \,exp(0)=1.
  2. exp(a+b)=exp(a)\times   exp(b).
  3.  exp(-a)=\frac{1}{exp(a)} .
  4. exp(na)={[exp(a)]}^n .
  5. exp(a-b)=\frac{exp(a)}{exp(b)} .

III . Etude de la fonction exponentielle.

Théorème :

La fonction exponentielle est strictement croissante sur \mathbb{R}. .

Propriétés :

\forall (x,y)\in\mathbb{R^2}.

  1.  x=y\Longleftrightarrow exp x =exp y .
  2. x<y\Longleftrightarrow exp x <exp y .
Théorème :

\lim_{x \to +\infty} exp x=+\infty.

\lim_{x \to -\infty} exp x= 0^+.

Théorème :

\lim_{x \to 0} \frac{exp x -1}{x}=1.

Pour \,\,x \,\,proche\,\, de\,\, 0,\,\,exp x \approx 1+x.

La fonction x \mapsto   1+x est l’approximation affine de la fonction exponentielle au voisinage de 0.

Théorème :

\lim_{x \to +\infty} \frac{exp x}{x}=+\infty.

\lim_{x \to -\infty} x exp x=0.

On admet que ce théorème se généralise et qu’à l’infini, l’exponentielle l’emporte sur les puissances.

Exemple :

 \lim_{x \to +\infty} \frac{exp x}{3x^2+5x+1}=+\infty.

 \lim_{x \to -\infty} exp x\times  (3x^5+5x^3+1)=0.

Vous avez assimilé ce cours sur la fonction exponentielle en terminale ?

Effectuez ce QCM sur les fonctions exponentielles en classe de terminale.

Les fonctions exponentielles

Un QCM sur les fonctions exponentielles

Cette publication est également disponible en : English (Anglais) Español (Espagnol) العربية (Arabe)


Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «la fonction exponentielle : cours de maths en terminale en PDF.» au format PDF.



D'autres fiches dans la section cours de maths en terminale S

Télécharger nos applications gratuites avec tous les cours et exercices corrigés.

Application Mathovore sur Google Play Store.    Application Mathovore sur Apple Store.     Suivez-nous sur YouTube.

D'autres fiches similaires à la fonction exponentielle : cours de maths en terminale en PDF..
  • 94
    La dérivée d'une fonction : cours de maths en terminale à télécharger en PDF.Cours sur la notion de dérivée et dérivation d'une fonction numérique. I. La notion de dérivée d'une fonction 1.Dérivabilité et fonction dérivée Définition : le nombre dérivé On considère une fonction f définie sur un intervalle I de ainsi que deux nombres réels et tel que et appartiennent à I.…
  • 92
    Cours de maths en terminale à télécharger en PDF.Des cours de maths en terminale que vous pouvez télécharger en PDF gratuitement puis les imprimer sur les très nombreux chapitres de ce niveau qui représente la dernière étape du lycée qui se conclue par les épreuves du baccalauréat durant 4 heures. Les leçons parcourent tous les chapitres comme les nombres,…
  • 91
    Fonction continue : cours de maths en terminale en PDF.La continuité d'une fonction numérique dans un cours de maths faisant intervenir le théorème des valeurs intermédiaires. Nous terminerons cette leçon par l'interprétation graphique et les propriétés de la continuité. Remarque : Les programmes limitent la continuité à une approche intuitive qui est de considérer qu’une fonction est continue sur un…


Les dernières fiches mises à jour.

Voici les dernières ressources similaires à la fonction exponentielle : cours de maths en terminale en PDF. mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

  1. Cours de maths à télécharger en PDF ou à imprimer.
  2. Volumes et sections : corrigé des exercices de maths en 3ème en PDF.
  3. Systèmes équations : corrigé des exercices de maths en 2de.
  4. Corrigé du brevet blanc de maths 2020
  5. Corrigés des sujets du baccalauréat de maths S

Inscription gratuite à Mathovore.  Mathovore c'est 13 625 035 cours et exercices de maths téléchargés en PDF.

Mathovore

GRATUIT
VOIR