La fonction exponentielle : cours de maths en terminale S

cours maths terminale

Les mathématiques sont considérées comme la matière où les élèves rencontrent le plus de difficultés. Mathovore vous permet de travailler sur la fonction exponentielle : cours de maths en terminale s et réviser en ligne par le biais de milliers de ressources rédigées par une équipe d'enseignants volontaires de l'éducation nationale. Vous développerez vos connaissances autant dans le domaine de l'algébre qu'en géométrie. Les mêmes ressources que vous trouverez dans votre manuel scolaire avec des cours complets conformes aux programmes officiels de l'éducation nationale et des exercices corrigés poortant sur chaque chapitre du programme de votre niveau. Chaque document dispose, en bas de page, d'un lien vous permettant de l'exporter au format PDF. Oubliez les cours particuliers qui peuvent être très cher sur une année scolaire. Nos resssources, cours et exercices corrigés sur la fonction exponentielle : cours de maths en terminale s vous permettent de vous exercer en ligne afin de combler vos lacunes en maths et d'envisager une constante progression tout au long de l'année scolaire en développant de nouvelles compétences et en comblant les différentes lacunes que vous rencontrez sur les cours de maths en terminale S . De nombreuses ressources en ligne pour les élèves de primaire (CE2, CM1 et CM1), du collège (6ème, 5ème, 4ème et 3ème) et du lycée (2de, 1ère et terminale) ainsi que de nombreux sujets du brevet des collèges et du baccalauréat afin de vous préparer dans les meileurs conditions pour ces diplômes. Les membres du site ont accès gratuitement aux différents corrigés afin de pouvoir relever les différents erreurs commises sur la fonction exponentielle : cours de maths en terminale s et d'assimiler les différentes notions comme les définitions, les propriétés et les théorèmes.

La fonction exponentielle avec un cours de maths en terminale S où nous étudierons une première approche à l’aide des equations différentielles.
Puis nous verrons les différentes propriétés,les  définitions et limites usuelles de la fonction exponentielle et la courbe représentative de la fonction.

I . Equation différentielle f’ = f avec f(0) = 1 :

Définition :

Une équation où figure une fonction et sa dérivée est une équation différentielle.

La résoudre sur un intervalle I, c’est trouver toutes les fonctions dérivables sur I qui vérifient l’égalité.

Ici, on cherche les fonctions f dérivables sur  \mathbb{R} telles que pour tout réel x :

f’(x) = f(x).

L’égalité f(0) = 1 est appelée condition initiale.

Propriété :

S’il existe une fonction f dérivable sur I telle que f’ = f et f(0) = 1 alors f ne s’annule pas sur I.

Théorème :

Il existe une unique fonction f dérivable sur I telle que f’ = f et f(0) = 1.

C’est la fonction exponentielle, notée exp.

II . Propriétés algébriques :

Théorème :

Relation fonctionnelle caractéristique :

La fonction exponentielle est la seule fonction dérivable sur I non nulle qui vérifie les conditions :

Pour tous réels a et b, f(a+b) = f(a).f(b)

f’(0) = 1

Propriétés :

Pour tous réels a et b et pour tout n entier relatif :

\exp(-a)=\frac{1}{\exp(a)}

\exp(a-b)=\frac{\exp(a)}{\exp(b)}

\exp(n a)=(\exp(a))^n

Remarque :

Pour tout réel a :

\exp(a)=\exp(\frac{a}{2}+\frac{a}{2})=\exp(\frac{a}{2}).\exp(\frac{a}{2})=[\exp(\frac{a}{2})]^2>0

Donc pour tout réel a, exp(a)>0.

Notations :

\forall n \in \mathbb{N},\, \exp(n)=\exp(n\,\times  \,1)=(\exp(1))^n.

On pose :

 e=\exp(1)\,\, alors\,\,\exp(n)=e^n .

Par analogie avec les puissances (et leurs règles de calcul) on pose :

\fbox{\forall x\in \mathbb{R},\,\exp(x)=e^x .}

Propriétés :

\forall x\in \mathbb{R},\,exp(0)=1.

exp(a+b)=exp(a)\times   exp(b).

 exp(-a)=\frac{1}{exp(a)} .

exp(na)={[exp(a)]}^n .

exp(a-b)=\frac{exp(a)}{exp(b)} .

III . Etude de la fonction exponentielle :

Théorème :

La fonction exponentielle est strictement croissante sur \mathbb{R}. .

Propriétés :

\forall (x,y)\in\mathbb{R^2}.

 x=y\Longleftrightarrow exp x =exp y .

x<y\Longleftrightarrow exp x <exp y .

Théorème :

\lim_{x \to +\infty} exp x=+\infty.

\lim_{x \to -\infty} exp x= 0^+.

Théorème :

\lim_{x \to 0} \frac{exp x -1}{x}=1.

Pour \,\,x \,\,proche\,\, de\,\, 0,\,\,exp x \approx 1+x.

La fonction x \mapsto   1+x est l’approximation affine de la fonction exponentielle au voisinage de 0.

Théorème :

\lim_{x \to +\infty} \frac{exp x}{x}=+\infty.

\lim_{x \to -\infty} x exp x=0.

On admet que ce théorème se généralise et qu’à l’infini, l’exponentielle l’emporte sur les puissances.

Exemples :

 \lim_{x \to +\infty} \frac{exp x}{3x^2+5x+1}=+\infty.

 \lim_{x \to -\infty} exp x\times  (3x^5+5x^3+1)=0.

Vous avez assimilé ce cours sur la fonction exponentielle en terminale ?

Effectuez ce QCM sur les fonctions exponentielles en classe de terminale.

Les fonctions exponentielles

Un QCM sur les fonctions exponentielles

4.3/5 - (101 votes)

Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «la fonction exponentielle : cours de maths en terminale S» au format PDF.




Télécharger nos applications gratuites avec tous les cours,exercices corrigés.

Application Mathovore sur Google Play Store. Application Mathovore sur Apple Store.

D'autres fiches similaires à la fonction exponentielle : cours de maths en terminale S.

Mathovore vous permet de réviser en ligne et de progresser en mathématiques tout au long de l'année scolaire.
De nombreuses ressources destinées aux élèves désireux de combler leurs lacunes en maths et d'envisager une progression constante. Tous les cours en primaire, au collège, au lycée mais également, en maths supérieures et spéciales ainsi qu'en licence sont disponibles sur notre sites web de mathématiques.
Des documents similaires à la fonction exponentielle : cours de maths en terminale S à télécharger ou à imprimer gratuitement en PDF avec tous les cours de maths du collège au lycée et post bac rédigés par des enseignants de l'éducation nationale.
Vérifiez si vous avez acquis le contenu des différentes leçons (définition, propriétés, téhorèmpe) en vous exerçant sur des milliers d'exercices de maths disponibles sur Mathovore et chacun de ces exercices dispose de son corrigé.
En complément des cours et exercices sur le thème la fonction exponentielle : cours de maths en terminale S, les élèves de troisième pourront réviser le brevet de maths en ligne ainsi que pour les élèves de terminale pourront s'exercer sur les sujets corrigé du baccalauréat de maths en ligne.
  • 93
    Cours sur la dérivée et dérivation d'une fonction : cours de maths en terminale S Cours sur la notion de dérivée et dérivation d'une fonction numérique. I.La notion de dérivée d'une fonction 1.Dérivabilité et fonction dérivée Définition : le nombre dérivé On considère une fonction f définie sur un intervalle I de ainsi que deux nombres réels et tel que et appartiennent à I. La…
  • 92
    Continuité d'une fonction : cours de maths en terminale S La continuité d'une fonction numérique dans un cours de maths faisant intervenir le théorème des valeurs intermédiaires. Nous terminerons cette leçon par l'interprétation graphique et les propriétés de la continuité. Remarque : Les programmes limitent la continuité à une approche intuitive qui est de considérer qu’une fonction est continue sur un…
  • 90
    Les limites et les asymptotes : cours de maths en terminale S Les limites (somme, produit, quotient) dans un cours de maths en terminale S avec l'étude des formes indéterminées. Dans cette leçon, nous mènerons une études des asymptotes horizontales, verticales et obliques en terminale S pour l'enseignement obligatoire. Connaissances nécessaires à ce chapitre : Déterminer la limite éventuelle d’une suite géométrique.…
  • 88
    Le produit scalaire : cours de maths en terminale S Le produit scalaire dans le plan dans un cours de maths en terminale S et dans l'espace. Cette leçon sur le produit scalaire est à télécharger en PDF gratuitement afin de progresser et développer vos compétences en classe de terminale S. I. Différentes expressions du produit scalaire : 1. Vecteurs…
  • 88
    Le raisonnement par récurrence : cours de maths en terminale S Le raisonnement par récurrence dans un cours de maths en terminale S et la rédaction de la démonstration. 1.Principe de récurrence et ses axiomes :   Axiome : Soit P(n) une propriété qui dépend d’un entier naturel n. Si les deux conditions suivantes sont réunies : , • P(n) est…


Retrouvez nos cours de maths et exercices corrigés sur notre chaîne YouTube.

Inscription gratuite à Mathovore.  Mathovore c'est 2 493 918 cours et exercices de maths téléchargés en PDF et 184 558 membres.
Rejoignez-nous : inscription gratuite.