cours maths terminale

La fonction exponentielle : cours de maths en terminale S

La fonction exponentielle avec un cours de maths en terminale S où nous étudierons une première approche à l’aide des equations différentielles.
Puis nous verrons les différentes propriétés,les  définitions et limites usuelles de la fonction exponentielle et la courbe représentative de la fonction.

I . Equation différentielle f’ = f avec f(0) = 1 :

Définition :

Une équation où figure une fonction et sa dérivée est une équation différentielle.

La résoudre sur un intervalle I, c’est trouver toutes les fonctions dérivables sur I qui vérifient l’égalité.

Ici, on cherche les fonctions f dérivables sur  \mathbb{R} telles que pour tout réel x :

f’(x) = f(x).

L’égalité f(0) = 1 est appelée condition initiale.

Propriété :

S’il existe une fonction f dérivable sur I telle que f’ = f et f(0) = 1 alors f ne s’annule pas sur I.

Théorème :

Il existe une unique fonction f dérivable sur I telle que f’ = f et f(0) = 1.

C’est la fonction exponentielle, notée exp.

II . Propriétés algébriques :

Théorème :

Relation fonctionnelle caractéristique :

La fonction exponentielle est la seule fonction dérivable sur I non nulle qui vérifie les conditions :

Pour tous réels a et b, f(a+b) = f(a).f(b)

f’(0) = 1

Propriétés :

Pour tous réels a et b et pour tout n entier relatif :

\exp(-a)=\frac{1}{\exp(a)}

\exp(a-b)=\frac{\exp(a)}{\exp(b)}

\exp(n a)=(\exp(a))^n

Remarque :

Pour tout réel a :

\exp(a)=\exp(\frac{a}{2}+\frac{a}{2})=\exp(\frac{a}{2}).\exp(\frac{a}{2})=[\exp(\frac{a}{2})]^2>0

Donc pour tout réel a, exp(a)>0.

Notations :

\forall n \in \mathbb{N},\, \exp(n)=\exp(n\,\times  \,1)=(\exp(1))^n.

On pose :

 e=\exp(1)\,\, alors\,\,\exp(n)=e^n .

Par analogie avec les puissances (et leurs règles de calcul) on pose :

\fbox{\forall x\in \mathbb{R},\,\exp(x)=e^x .}

Propriétés :

\forall x\in \mathbb{R},\,exp(0)=1.

exp(a+b)=exp(a)\times   exp(b).

 exp(-a)=\frac{1}{exp(a)} .

exp(na)={[exp(a)]}^n .

exp(a-b)=\frac{exp(a)}{exp(b)} .

III . Etude de la fonction exponentielle :

Théorème :

La fonction exponentielle est strictement croissante sur \mathbb{R}. .

Propriétés :

\forall (x,y)\in\mathbb{R^2}.

 x=y\Longleftrightarrow exp x =exp y .

x<y\Longleftrightarrow exp x <exp y .

Théorème :

\lim_{x \to +\infty} exp x=+\infty.

\lim_{x \to -\infty} exp x= 0^+.

Théorème :

\lim_{x \to 0} \frac{exp x -1}{x}=1.

Pour \,\,x \,\,proche\,\, de\,\, 0,\,\,exp x \approx 1+x.

La fonction x \mapsto   1+x est l’approximation affine de la fonction exponentielle au voisinage de 0.

Théorème :

\lim_{x \to +\infty} \frac{exp x}{x}=+\infty.

\lim_{x \to -\infty} x exp x=0.

On admet que ce théorème se généralise et qu’à l’infini, l’exponentielle l’emporte sur les puissances.

Exemples :

 \lim_{x \to +\infty} \frac{exp x}{3x^2+5x+1}=+\infty.

 \lim_{x \to -\infty} exp x\times  (3x^5+5x^3+1)=0.


Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «la fonction exponentielle : cours de maths en terminale S» au format PDF.



Télécharger nos applications gratuites avec tous les cours,exercices corrigés Application Mathovore sur Google Play Store. Application Mathovore sur Apple Store.

.

D'autres fiches similaires à la fonction exponentielle : cours de maths en terminale S.

Mathovore vous permet de réviser en ligne et de progresser en mathématiques tout au long de l'année scolaire.
De nombreuses ressources destinées aux élèves désireux de combler leurs lacunes en maths et d'envisager une progression constante. Tous les cours en primaire, au collège, au lycée mais également, en maths supérieures et spéciales ainsi qu'en licence sont disponibles sur notre sites web de mathématiques.
Des documents similaires à la fonction exponentielle : cours de maths en terminale S à télécharger ou à imprimer gratuitement en PDF avec tous les cours de maths du collège au lycée et post bac rédigés par des enseignants de l'éducation nationale.
Vérifiez si vous avez acquis le contenu des différentes leçons (définition, propriétés, téhorèmpe) en vous exerçant sur des milliers d'exercices de maths disponibles sur Mathovore et chacun de ces exercices dispose de son corrigé.
En complément des cours et exercices sur le thème la fonction exponentielle : cours de maths en terminale S, les élèves de troisième pourront réviser le brevet de maths en ligne ainsi que pour les élèves de terminale pourront s'exercer sur les sujets corrigé du baccalauréat de maths en ligne.

Les dernières fiches mises à jour

Voici les dernières ressources mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

Retrouvez nos cours de maths et exercices corrigés sur notre chaîne YouTube.

Inscription gratuite à Mathovore.  Mathovore c'est 2 006 376 cours et exercices de maths téléchargés en PDF et 167 982 membres.
Rejoignez-nous : inscription gratuite.

videos maths youtube
Mathovore

GRATUIT
VOIR