Cours maths 1ère

Le produit scalaire dans le plan : cours de maths en 1ère S

Le produit scalaire dans le plan dans un cours de maths en 1ère S où nous étudierons la définition et les différentes propriétés du produit scalaire. Dans cette leçon en première S, nous verrons la relation entre le produit scalaire et la notion d’orthogonalité. Puis, nous terminerons par des applications avec le cosinus d’un angle, le théorème d’Al-Kashi et le théorème de la médiane.

I. Différentes expressions du produit scalaire :

1. Vecteurs colinéaires :

Définition :

soient  \vec{u} et \vec{v} deux vecteurs colinéaires non nuls, tels que

 \vec{u}=\vec{OA} et \vec{v}=\vec{OB}.

• Si \vec{u} et \vec{v} sont de même sens :  \vec{u}.\vec{v}=OA\times   OB .

• Si \vec{u} et \vec{u} sont de sens contraires :  \vec{u}.\vec{v}=OA\times   OB.

• Si  \vec{u}=\vec{0} ou \vec{v}=\vec{0} alors \vec{u}.\vec{v}=0.

\vec{u}.\vec{u}=||\vec{u}|| est le carré scalaire du vecteur \vec{u}

cours maths

2. Vecteurs quelconques :

Propriété 1 :

Soient \vec{u} et \vec{v} deux vecteurs non nuls tels que

 \vec{u}=\vec{OA} et \vec{v}=\vec{OB}.

Alors :

\fbox{\vec{u}.\vec{v}=OA'\times   OB=OA\times   OB'} .

A’ et B’ sont respectivement les projetés orthogonaux de A sur (OB) et de B sur (OA).

cours maths

3. Propriétés :

Propriété 2 :

Soient (x;y) et (x’;y’) les coordonnées respectives des vecteurs \vec{u} et  \vec{v} dans un repere orthonormé quelconque.

 \fbox{\vec{u}.\vec{v}\,=\,x.x'+y.y'} .

II. Produit scalaire et orthogonalité :

Définition :

Dire que  \vec{u} et \vec{v} sont deux vecteurs orthogonaux signifie que :

• Soit \vec{u}=\vec{0} ou  \vec{v}=\vec{0};

• Soit (OA)\perp(OB), avec  \vec{u}=\vec{OA} et \vec{v}=\vec{OB} non nuls.

cours maths

2. Propriété :

Propriété :

 \fbox{\vec{u}\perp\vec{v}\,\,\Longleftrightarrow\,\,\vec{u}.\vec{v}=0} .

III. Propriétés du produit scalaire :

Propriétés :

Propriétés :

Soient \vec{u}\,,\,\vec{v},\,\vec{w} trois vecteurs et k un nombre réel.

\vec{u}.\vec{v}=\vec{v}.\vec{u} (symétrie).

 (k\vec{u}).\vec{v}=\vec{u}.(k\vec{v})=k(\vec{u}.\vec{v}) (linéarité)

(\vec{u}+\vec{v}).\vec{w}=\vec{u}.\vec{w}+\vec{v}.\vec{w} (linéarité)

\vec{u}.(\vec{v}+\vec{w})=\vec{u}.\vec{v}+\vec{u}.\vec{w} (linéarité)

(\vec{u}+\vec{v})^2=\vec{u}^2+2\vec{u}.\vec{v}+\vec{v}^2 (identité remarquable)

(\vec{u}-\vec{v})^2=\vec{u}^2-2\vec{u}.\vec{v}+\vec{v}^2 (identité remarquable)

(\vec{u}-\vec{v})(\vec{u}+\vec{v})=\vec{u}^2-\vec{v}^2 (identité remarquable)

IV. Applications du produit scalaire :

1. produit scalaire et cosinus :

Propriété :

Soit \vec{u} et  \vec{v} non nuls.

\vec{u}.\vec{v}=||\vec{u}||\times   ||\vec{v}||\times   cos(\vec{u},\vec{v})

2. Théorème d’Al-Kashi :

Théorème :

Soit ABC un triangle tel que AB=c, AC=b et BC=a.

On a :

a^2\,=\,b^2+c^2-2bc\times   cosA

 b^2\,=\,a^2+c^2-2ac\times   cosB

c^2\,=\,a^2+b^2-2ab\times   cosC

cours maths

3. Théorème de la médiane :

Théorème :

Soient A et B deux points distincts et I le milieu du segment [AB] .

Pour tout point M, :

\fbox{ MA^2\,+MB^2\,=\,2MI^2\,+\,\frac{AB^2}{2}}

cours maths


Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «le produit scalaire dans le plan : cours de maths en 1ère S» au format PDF.



Télécharger nos applications gratuites avec tous les cours,exercices corrigés Application Mathovore sur Google Play Store. Application Mathovore sur Apple Store.

.

D'autres cours de maths en 1ère en PDF :

  1. Généralités sur les fonctions numériques
  2. Equations et inéquations du second degré
  3. Le produit scalaire dans le plan
  4. Dérivée d’une fonction
  5. Limites et asymptotes
  6. Les suites numériques
  7. Relations métriques dans le triangle quelconque
  8. Angles orientés, relations trigonométriques. et repérages polaires
  9. Géométrie dans l’espace
  10. Les probabilités


Des cours et exercices corrigés en 1ère en vidéos


D'autres documents similaires Retrouvez nos cours de maths et exercices corrigés sur notre chaîne YouTube.

Inscription gratuite à Mathovore.  Mathovore c'est 1 914 307 cours et exercices de maths téléchargés en PDF et 163 403 membres.
Rejoignez-nous : inscription gratuite.

Mathovore

GRATUIT
VOIR