Produit scalaire : exercices de maths en 1ère corrigés en PDF.

Le produit scalaire dans le plan avec des exercices de maths en 1ère en ligne pour progresser au lycée. Savoir appliquer les propriétés du produit scalaire et démontrer que des vecteurs sont orthogonaux ou colinéaires. Utiliser la relation de Chasles sur les vecteurs.

Exercice n° 1:
Soient  \vec{AB} et  \vec{AC} deux vecteurs et  k\in\mathbb{Z} .
Calculer  \vec{AB}.\vec{AC} dans les conditions suivantes :
a. AB=3 , AC=5 et  (\vec{AB}.\vec{AC})=-\frac{\pi}{6}+2k\pi .
b. AB=1 , AC=4 et  (\vec{AB}.\vec{AC})=-\frac{8\pi}{3}+2k\pi .
c. AB=4 , AC=7 et  (\vec{AB}.\vec{AC})=-\frac{\pi}{4}+2k\pi .
d. AB=2 , AC=2 et  (\vec{AB}.\vec{AC})=-\frac{5\pi}{3}+2k\pi .

Exercice n° 2 :
Calculer  \vec{AC}.\vec{AB}\,;\,\vec{CA}.\vec{BA}\,;\,\vec{BA}.\vec{AC}\,\,; sachant que :
a.  \vec{AB}.\vec{AC}=-3
b.  \vec{AB}.\vec{AC}=2

Exercice n° 3 :
MNPQ est un losange de centre O tel que MP=8 et NQ=6.
Calculer les produits scalaires suivants :
a.  \vec{MO}.\vec{MN}\,;\,\vec{PQ}.\vec{NQ}\,;\,\vec{PM}.\vec{NP}\,\,; .
b.  \vec{MQ}.\vec{NP}\,;\,\vec{MN}.\vec{PQ}\,;\,\vec{OM}.\vec{NM}\,\,;

Exercice n° 4 :
Soit ABCD un carré et I un point de [AB].
On note H le projeté orthogonal de A sur [ID].
En exprimant de deux manières différentes  \vec{IA}.\vec{ID}, démontrer que :
 \vec{IA}.\vec{ID}=AI^2

Exercice n° 5  :
Soit ABC un triangle équilatéral de côté 1.
Soit H le projeté orthogonal de A sur (BC).
Calculer  \vec{BA}.\vec{AC} et  \vec{AB}.\vec{AH} en utilisant les projections orthogonales .

Exercice 6 – Produit scalaire dans un carré

Soit un carré ABCD. On construit un rectangle APQR tel que :

 – P et R sont sur les côtés [AB] et [AD] du carré ;
–  AP = DR.

Le problème a pour objet de montrer que les droites (CQ) et (PR) sont perpendiculaires.1. Justifier que : \vec{CQ}.\vec{PR}=\vec{CQ}.(\vec{AR}-\vec{AP}) .2. En déduire que les droites (CQ) et (PR) sont perpendiculaires. Produit scalaire

Exercice 7 – Propriétés algébriques
On a   \| \vec{u}  \|=2 et  \| \vec{v}  \|=3  et  \vec{u} . \vec{v} = -1.
1) Calculez (\vec{u}+\vec{v})^2  et  \| (\vec{u} -\vec{v})^2 \|.
2) Calculer (\vec{u} + \vec{v}) . (2\vec{u}-3\vec{v}).

Exercice 8 – Produit scalaire et point quelconque
Soit A et B deux points distincts du plan et I le milieu du segment [AB].
Démontrer que quelque soit le point M du plan, on a l’égalité :
MA^2-MB^2=(\vec{MA}+\vec{MB}).\vec{BA}=2\vec{MI}.\vec{BA}.
Exercice 9 – Les vecteurs dans le plan
Soit le parallélogramme ABCD tel que :
E est le milieu de [AD]
\vec{AF}=\frac{2}{3}\vec{AB}
K est le dernier sommet du parallélogramme EAFK
M le milieu de [BE]
\vec{AG}=\frac{1}{3}\vec{AB}
\vec{GB}=2\vec{GF}
\vec{GC}=2\vec{GK}
Montrer que vecteur \vec{GK}=2\vec{GM} .

<Exercice 10 – Projeté orthogonal
ABC est un triangle rectangle en A .
H est le projeté orthogonal de A sur (BC) .
I et J sont les milieux respectifs de [AB] et [AC] .
Projeté orthogonal
Démontrer que (HI) et (HJ) sont perpendiculaires .

Exercice 11 – Calculs de produits scalaires dans un parallélogramme

ABCD est un parallélogramme avec AB = 4, AD = 5 et AC = 7.

1.Calculer\vec{AB}.\vec{AD} .

2. En déduire BD.

Exercice 12 – Calculs de produits scalaires dans un carrés

MNPQ est un carré avec MN = 6. I est le centre du carré.y

Calculer les produits scalaires suivants :

1.    \vec{MN}.\vec{QP}.

2.    \vec{MN}.\vec{PN}.

3.  \vec{IN}.\vec{IP}.

4.  \vec{QI}.\vec{NI}.

Carré et produit scalaire

Exercice 13 – Déterminer si le triangle est rectangle

ABC est un triangle dans lequel AB = 2 et AC = 3.

De plus \vec{AB}.\vec{AC}=4

Ce triangle est-il rectangle ? Si oui, préciser en quel sommet.

Triangle

Exercice 14 – Triangle équilatéral
ABC est un triangle équilatéral de côté 5 cm. I est le milieu de [BC].

Calculer les produits scalaires suivants :

1. \vec{BA}.\vec{BC} .

2. \vec{CA}.\vec{CI}.

3. (\vec{AB}-\vec{AC}).\vec{AI}.

Triangle
Exercice 15 – Coordonnées du barycentre

Dans un repère orthonormé (O;\vec{i},\vec{j})
on considère les points suivants : A (2 ; 1), B (7 ; 2) et C (3 ; 4).

Toutes les questions suivantes sont indépendantes et sans rapport.

1. Calculer les coordonnées du barycentre G de (A ; 3), (B ; 2) et (C ; – 4).

2.  Déterminer une équation cartésienne de la médiatrice de [BC].

3. Calculer \vec{CB}.\vec{CA} .

4.  L’angle \widehat{C}  est-il droit ?

Triangle et repère cartésien

Exercice 16 – Cosinus
Soit ABC un triangle.
Calculer \vec{AB}.\vec{AC}  et BC dans chacun des cas suivants :
1. AB= 6cm ; AC= 5 cm et \widehat{BAC}=60^{\circ} .
2. AB= 7 cm ; AC=4cm et \widehat{BAC}=120^{\circ} .

Exercice 17 – Vecteurs orthogonaux
\vec{u} et \vec{v}  sont deux vecteurs de même norme .
Démontrer que les vecteurs \vec{u}+\vec{v} et \vec{u}-\vec{v} sont orthogonaux .

Exercice 18 – Triangle équilatéral
ABC est un triangle équilatéral de côté a .
H est le projeté orthogonal de A sur (BC) et O le centre du cercle circonscrit à ABC.
Exprimer en fonction de a, les produits scalaires suivants :
\vec{AB}.\vec{AC}\,;\,\vec{AC}.\vec{CB}\,;\,\vec{AB}.\vec{AH}\,;\,\vec{AH}.\vec{BC}\,;\,\vec{OA}.\vec{OB}\, .

Exercice 19 – Calculs avec produits scalaires
Sachant que les vecteurs \vec{u} et  \vec{v} sont tels que  \| \vec{u}  \|=3 ,  \| \vec{v}  \|=7 et \vec{u}.\vec{v} =13.
Calculer les produits scalaires suivants :
1. \vec{u}. (\vec{u}+3\vec{v}  ).
2.  (\vec{u}-2\vec{v}  ) ^2.

Exercice 20 – Condition sur des points

A quelle condition sur les points A, B et C a-t-on :

(\vec{AB}+\vec{AB})^2=(AB+AC)^2

Exercices 21 à 28 ...

Télécharger et imprimer ce document en PDF gratuitement :

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «produit scalaire : exercices de maths en 1ère corrigés en PDF.» au format PDF.

Vous devez vous inscrire ou vous connecter à votre compte afin de pouvoir télécharger ce document au format PDF.

Réviser les leçons et les exercices avec nos Q.C.M :


D'autres utilitaires pour progresser en autonomie :


Inscription gratuite à Mathovore.  Mathovore c'est 14 070 223 cours et exercices de maths téléchargés en PDF.

Mathovore

GRATUIT
VOIR