Produit scalaire : exercices de maths en 1ère corrigés en PDF.

exercices de maths en 1ère S Signaler une erreur sur cette page de Mathovore.Signaler une erreur / Remarque ? exercices maths 1ere
Le produit scalaire dans le plan avec des exercices de maths en 1ère en ligne pour progresser au lycée. Savoir appliquer les propriétés du produit scalaire et démontrer que des vecteurs sont orthogonaux ou colinéaires. Utiliser la relation de Chasles sur les vecteurs.

Exercice n° 1:
Soient  \vec{AB} et  \vec{AC} deux vecteurs et  k\in\mathbb{Z} .
Calculer  \vec{AB}.\vec{AC} dans les conditions suivantes :
a. AB=3 , AC=5 et  (\vec{AB}.\vec{AC})=-\frac{\pi}{6}+2k\pi .
b. AB=1 , AC=4 et  (\vec{AB}.\vec{AC})=-\frac{8\pi}{3}+2k\pi .
c. AB=4 , AC=7 et  (\vec{AB}.\vec{AC})=-\frac{\pi}{4}+2k\pi .
d. AB=2 , AC=2 et  (\vec{AB}.\vec{AC})=-\frac{5\pi}{3}+2k\pi .

Exercice n° 2 :
Calculer  \vec{AC}.\vec{AB}\,;\,\vec{CA}.\vec{BA}\,;\,\vec{BA}.\vec{AC}\,\,; sachant que :
a.  \vec{AB}.\vec{AC}=-3
b.  \vec{AB}.\vec{AC}=2

Exercice n° 3 :
MNPQ est un losange de centre O tel que MP=8 et NQ=6.
Calculer les produits scalaires suivants :
a.  \vec{MO}.\vec{MN}\,;\,\vec{PQ}.\vec{NQ}\,;\,\vec{PM}.\vec{NP}\,\,; .
b.  \vec{MQ}.\vec{NP}\,;\,\vec{MN}.\vec{PQ}\,;\,\vec{OM}.\vec{NM}\,\,;

Exercice n° 4 :
Soit ABCD un carré et I un point de [AB].
On note H le projeté orthogonal de A sur [ID].
En exprimant de deux manières différentes  \vec{IA}.\vec{ID}, démontrer que :
 \vec{IA}.\vec{ID}=AI^2

Exercice n° 5  :
Soit ABC un triangle équilatéral de côté 1.
Soit H le projeté orthogonal de A sur (BC).
Calculer  \vec{BA}.\vec{AC} et  \vec{AB}.\vec{AH} en utilisant les projections orthogonales .

Exercice 6 – Produit scalaire dans un carré

Soit un carré ABCD. On construit un rectangle APQR tel que :

 – P et R sont sur les côtés [AB] et [AD] du carré ;
–  AP = DR.
Le problème a pour objet de montrer que les droites (CQ) et (PR) sont perpendiculaires.1. Justifier que : \vec{CQ}.\vec{PR}=\vec{CQ}.(\vec{AR}-\vec{AP}) .2. En déduire que les droites (CQ) et (PR) sont perpendiculaires.Produit scalaire
Exercice 7 – Propriétés algébriques
On a   \| \vec{u}  \|=2 et  \| \vec{v}  \|=3  et  \vec{u} . \vec{v} = -1.
1) Calculez (\vec{u}+\vec{v})^2  et  \| (\vec{u} -\vec{v})^2 \|.
2) Calculer (\vec{u} + \vec{v}) . (2\vec{u}-3\vec{v}).Exercice 8 – Produit scalaire et point quelconque
Soit A et B deux points distincts du plan et I le milieu du segment [AB].
Démontrer que quelque soit le point M du plan, on a l’égalité :
MA^2-MB^2=(\vec{MA}+\vec{MB}).\vec{BA}=2\vec{MI}.\vec{BA}.

Exercice 9 – Les vecteurs dans le plan
Soit le parallélogramme ABCD tel que :
E est le milieu de [AD]
\vec{AF}=\frac{2}{3}\vec{AB}
K est le dernier sommet du parallélogramme EAFK
M le milieu de [BE]
\vec{AG}=\frac{1}{3}\vec{AB}
\vec{GB}=2\vec{GF}
\vec{GC}=2\vec{GK}

Montrer que vecteur \vec{GK}=2\vec{GM} .

Exercice 10 – Projeté orthogonal
ABC est un triangle rectangle en A .
H est le projeté orthogonal de A sur (BC) .
I et J sont les milieux respectifs de [AB] et [AC] .
Projeté orthogonal
Démontrer que (HI) et (HJ) sont perpendiculaires .

Exercice 11 – Calculs de produits scalaires dans un parallélogramme

ABCD est un parallélogramme avec AB = 4, AD = 5 et AC = 7.

1.Calculer\vec{AB}.\vec{AD} .

2. En déduire BD.

Exercice 12 – Calculs de produits scalaires dans un carrés
MNPQ est un carré avec MN = 6. I est le centre du carré.

Calculer les produits scalaires suivants :

1.    \vec{MN}.\vec{QP}.

2.    \vec{MN}.\vec{PN}.

3.  \vec{IN}.\vec{IP}.

4.  \vec{QI}.\vec{NI}.

Carré et produit scalaire
Exercice 13 – Déterminer si le triangle est rectangle

ABC est un triangle dans lequel AB = 2 et AC = 3.

De plus \vec{AB}.\vec{AC}=4

Ce triangle est-il rectangle ? Si oui, préciser en quel sommet.

Triangle

Exercice 14 – Triangle équilatéral
ABC est un triangle équilatéral de côté 5 cm. I est le milieu de [BC].

Calculer les produits scalaires suivants :

1. \vec{BA}.\vec{BC} .

2. \vec{CA}.\vec{CI}.

3. (\vec{AB}-\vec{AC}).\vec{AI}.

Triangle
Exercice 15 – Coordonnées du barycentre

Dans un repère orthonormé (O;\vec{i},\vec{j})
on considère les points suivants : A (2 ; 1), B (7 ; 2) et C (3 ; 4).

Toutes les questions suivantes sont indépendantes et sans rapport.

1. Calculer les coordonnées du barycentre G de (A ; 3), (B ; 2) et (C ; – 4).

2.  Déterminer une équation cartésienne de la médiatrice de [BC].

3. Calculer \vec{CB}.\vec{CA} .

4.  L’angle \widehat{C}  est-il droit ?

Triangle et repère cartésien

Exercice 16 – Cosinus
Soit ABC un triangle.
Calculer \vec{AB}.\vec{AC}  et BC dans chacun des cas suivants :
1. AB= 6cm ; AC= 5 cm et \widehat{BAC}=60^{\circ} .
2. AB= 7 cm ; AC=4cm et \widehat{BAC}=120^{\circ} .

Exercice 17 – Vecteurs orthogonaux
\vec{u} et \vec{v}  sont deux vecteurs de même norme .
Démontrer que les vecteurs \vec{u}+\vec{v} et \vec{u}-\vec{v} sont orthogonaux .

Exercice 18 – Triangle équilatéral
ABC est un triangle équilatéral de côté a .
H est le projeté orthogonal de A sur (BC) et O le centre du cercle circonscrit à ABC.
Exprimer en fonction de a, les produits scalaires suivants :
\vec{AB}.\vec{AC}\,;\,\vec{AC}.\vec{CB}\,;\,\vec{AB}.\vec{AH}\,;\,\vec{AH}.\vec{BC}\,;\,\vec{OA}.\vec{OB}\, .

Exercice 19 – Calculs avec produits scalaires
Sachant que les vecteurs \vec{u} et  \vec{v} sont tels que  \| \vec{u}  \|=3 ,  \| \vec{v}  \|=7 et \vec{u}.\vec{v} =13.
Calculer les produits scalaires suivants :
1. \vec{u}. (\vec{u}+3\vec{v}  ).
2.  (\vec{u}-2\vec{v}  ) ^2.

Exercice 20 – Condition sur des points

A quelle condition sur les points A, B et C a-t-on :

(\vec{AB}+\vec{AB})^2=(AB+AC)^2

Exercice 21 – Déterminer un ensemble de points du plan

On considère un segment [AB] tel que AB = 1 dm.

Déterminer l’ensemble des points M du plan tels que :

1.  \vec{MA}.\vec{MB}=1.

2. MA^2+MB^2=5.

Déterminer un ensemble de points du plan

Exercice 22 – Trouver un ensemble de points
[AB] est un segment de milieu I et AB = 2 cm.
1. Montrer que pour tout point M du plan :
MA^2-MB^2=2\vec{IM}.\vec{AB}
2. Trouver et représenter l’ensemble des points M du plan tels que : MA^2 -MB^2 = 14.

Exercice 23 – Les égalités vectorielles du parallélogramme
Démontrer que :
1.    \| \vec{u}+\vec{v}  \|^2- \| \vec{u}-\vec{v}  \|^2=4\vec{u}.\vec{v} .
2.   \| \vec{u}+\vec{v}  \|^2+ \| \vec{u}-\vec{v}  \|^2=2( \|\vec{u}  \|^2+ \| \vec{v}  \|^2) .
3. Quel est le lien avec le losange, le parallèlogramme ?
4. Démontrer que :
(\vec{u}+\vec{v}).(\vec{u}-\vec{v})= \| \vec{u}  \|^2- \| \vec{v}  \|^2
5. En déduire qu’un parallélogramme a ses diagonales perpendiculaires si et seulement si ses côtés sont égaux.

Exercice 24 – Equation d’un cercle et de la tangente

Dans un repère orthonormé(O;\vec{i},\vec{j}) , on donne un point \Omega (2;-3) .

1.  Déterminer l’équation du cercle (C) de centre \Omega et de rayon R = 5.

2.  Démontrer que le point A( – 2 ; 0) est un point du cercle (C).

3.  Déterminer une équation cartésienne de la tangente en A au cercle (C).

Equation d'un cercle et de la tangente

Exercice 25 – Médiatrice et hauteur d’un triangle
MNPQ est un carré avec MN = 6. I est le centre du carré.

Calculer les produits scalaires suivants :

1.    \vec{MN}.\vec{QP}.

2.    \vec{MN}.\vec{PN}.

3.  \vec{IN}.\vec{IP}.

4.  \vec{QI}.\vec{NI}.

Médiatrice et hauteur d'un triangle

Exercice 26 – Distance d’un point à un cercle
On se place dans un repère orthonormé (O;\vec{i},\vec{j}) .
1. Déterminer l’équation du cercle de centre \Omega (5;1)  tangent à la droite (D) d’équation :
x + y - 4 = 0.
Indication :

on rappelle que la distance entre un point A(\alpha ;\beta ) et une droite (D) d’équation ax + by + c = 0 est
donnée par la formule :

d(A,D)=\frac{ | a\alpha +b\beta +c  |}{\sqrt{a^2+b^2}}

Distance d'un point à un cercle

Exercice 27 – Produit scalaire et cercle
On se place dans un repère orthonormé (O;\vec{i},\vec{j}).

Examiner si les équations suivantes sont des équations de cercle et, le cas échéant, préciser le centre et le rayon du cercle.

1.  x^2 + y^2 - 2x - 6y + 5 = 0.

2.  x^2 + y^2 - x - 3y + 3 = 0.

Produit scalaire et cercle

Exercice 28 – Produit scalaire dans un triangle

ABC est un triangle et I est le milieu de [BC].
On donne : BC = 4, AI = 3 et (\vec{IA},\vec{IB})=\frac{\pi}{3} .

Calculer :

1.    \vec{AB}.\vec{AC}.

2.   AB^2+AC^2.

3.  AB^2-AC^2.

4.  AB\,et\,AC.

Produit scalaire dans un triangle

Corrigé des exercices de maths.

Cette publication est également disponible en : English (Anglais) Español (Espagnol) العربية (Arabe)


Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «produit scalaire : exercices de maths en 1ère corrigés en PDF.» au format PDF.



D'autres fiches dans la section exercices de maths en 1ère S

Télécharger nos applications gratuites avec tous les cours et exercices corrigés.

Application Mathovore sur Google Play Store.    Application Mathovore sur Apple Store.     Suivez-nous sur YouTube.

D'autres fiches similaires à produit scalaire : exercices de maths en 1ère corrigés en PDF..
  • 59
    Vecteurs et translation : exercices de maths en 2de corrigés en PDF.Des exercices de maths sur les vecteurs et la translation en classe de 2de. Vous trouverez pour chaque exercice sa correction détaillée en seconde. Exercice 1 - Les point sont-ils alignés Les points P, Q et R sont-ils alignés ? Exercice 2 - Points alignés et vecteurs ABCD est un…
  • 58
    Barycentre : exercices de maths en 1ère corrigés en PDF.Des exercices sur le barycentre en 1ère avec l'utilisation de la définition du barycentre de n points pondérés et des propriétés du barycentre comme l'associativité. Tous ces exercices en première disposent d'un corrigé détaillé afin que les élèves puissent réviser en ligne. Exercice 1 - Barycentre de points pondérés 1.…
  • 54
    Géométrie dans l'espace : exercices de maths en 1ère corrigés en PDF.Des exercices de maths en 1ère sur la géométrie dans l'espace. Exercice 1 - Cercle et lieux de points Il est vivement recommandé d’utiliser un logiciel de géométrie…  1. Partie préliminaire : on considère un triangle ABC, G son centre de gravité, Ω le centre de son cercle circonscrit et H…


Les dernières fiches mises à jour.

Voici les dernières ressources similaires à produit scalaire : exercices de maths en 1ère corrigés en PDF. mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

  1. Cours de maths à télécharger en PDF ou à imprimer.
  2. Volumes et sections : corrigé des exercices de maths en 3ème en PDF.
  3. Systèmes équations : corrigé des exercices de maths en 2de.
  4. Corrigé du brevet blanc de maths 2020
  5. Corrigés des sujets du baccalauréat de maths S

Inscription gratuite à Mathovore.  Mathovore c'est 13 625 035 cours et exercices de maths téléchargés en PDF.

Mathovore

GRATUIT
VOIR