cours maths 1ere

Position relative de deux droites dans l’espace : cours de maths en 1ère S

Cours de géométrie dans l’espace en classe de première avec la notion de perspective cavalière ainsi que les différentes positions relatives de deux droites dans l’espace et de plans. Cette leçon est à télécharger au format PDF.

I.Perspective cavalière

Dans une représentation d’un solide en perspective cavalière :

  • une figure représentée dans un plan vu de face est représentée en vraie grandeur, sans changer sa forme ;
  • deux droites parallèles sont représentées par deux droites parallèles ;
  • des points alignés sont représentés par des points alignés ;
  • le milieu d’un segment est représenté par le milieu du segment dessiné ;
  • les éléments visibles sont en traits pleins, ceux qui sont cachés sont en pointillés ;
  • une droite perpendiculaire au plan frontal est représentée par une droite faisant un angle aigu avec l’horizontale du support de représentation ;
  • toute longueur sur une telle droite est multipliée par un coefficient inférieur à 1.

II. Positions relatives de droites et de plans

1.Règles d’incidence

Règles :
  1.  Par deux points distincts il passe une unique droite ;
  2. Par trois points non alignés A, B, C, il passe un unique plan noté (ABC) ;
  3. Si un plan contient deux points A et B, alors il contient tous les points de la droite (AB) ;
  4. Si (d) est une droite et A un point non situé sur (d), il existe un unique plan contenant (d) et A.

2.Positions relatives de deux droites

Propriété :

Deux droites peuvent être :

  • Coplanaires : elles sont situées dans un même plan (elles sont alors sécantes ou parallèles)
  • Non coplanaires : et dans ce cas elles n’ont aucun point en commun.

position relative droites

3.Positions relatives d’une droite et d’un plan

Propriété :

Une droite peut être :

  • Contenue dans un plan si elle passe par deux points du plan ;
  • Sécante au plan, si elle n’a qu’un seul  point commun avec ce plan (voir ci-contre) ;
  • Parallèle au plan si elle n’a aucun point commun avec le plan.

Position relative de deux droites espace

4.Position relatives de deux plans

Propriété :

Deux plans sont soit  parallèles, s’ils n’ont aucun point en commun, soit sécants et dans ce cas leur intersection est une droite (ils ont donc une infinité de points d’intersection).

Exemple de plans sécants, selon la droite (UV).

plans sécants

III- Parallélisme dans l’espace

1.Parallélisme entre des droites

Propriétés : 
  • Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles.
  • Si deux droites sont parallèles alors tout plan qui coupe l’une coupe aussi l’autre.

2.Parallélisme entre deux plans

Propriétés :
  • Si deux plans sont parallèles alors tout plan parallèle à l’un est aussi parallèle à l’autre.
  • Si deux droites sécantes (d) et (d’) du plan (P) sont parallèles à deux droites sécantes et du plan (P’) alors les deux plans (P)  et (P’)  sont parallèles.
  • Si deux plans (P) et (P’)  sont parallèles, alors tout plan qui coupe l’un coupe aussi l’autre et les droites d’intersection (d) et (d’) sont parallèles.

Exemple de plans parallèles déterminés par deux paires de droites sécantes.

plans parallèles

2.Parallélisme entre droites et plans

Propriétés :
  • Si deux plans sont parallèles et si une droite est parallèle au premier plan alors elle est aussi parallèle au second.
  • Si la droite (d) est parallèle au plan (P) alors tout plan contenant (d) et sécant à (P) le coupe selon une droite parallèle à (d). Démonstration
  • Si la droite (d) est parallèle à une droite du plan (P) alors (d) est parallèle au plan (P) .Démonstration
  • Si les plans (P) et (P’) sont sécants selon la droite et si (d) est une droite parallèle aux deux plans (P)  et (P’) alors les droites et (d) sont parallèles.

IV.Calculs en géométrie dans l’espace

1.Orthogonalité entre une droite et un plan

Propriété :
  • Une droite est perpendiculaire à un plan si elle est orthogonale à deux droites sécantes de ce plan.
  • Si une droite est perpendiculaire à un plan alors elle est orthogonale à toutes les droites de ce plan.

2.Aires et volumes des solides classiques

Formules du volume des solides


Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «position relative de deux droites dans l'espace : cours de maths en 1ère S» au format PDF.



Télécharger nos applications gratuites avec tous les cours,exercices corrigés Application Mathovore sur Google Play Store. Application Mathovore sur Apple Store.

.

D'autres fiches similaires à position relative de deux droites dans l'espace : cours de maths en 1ère S.

Mathovore vous permet de réviser en ligne et de progresser en mathématiques tout au long de l'année scolaire.
De nombreuses ressources destinées aux élèves désireux de combler leurs lacunes en maths et d'envisager une progression constante. Tous les cours en primaire, au collège, au lycée mais également, en maths supérieures et spéciales ainsi qu'en licence sont disponibles sur notre sites web de mathématiques.
Des documents similaires à position relative de deux droites dans l'espace : cours de maths en 1ère S à télécharger ou à imprimer gratuitement en PDF avec tous les cours de maths du collège au lycée et post bac rédigés par des enseignants de l'éducation nationale.
Vérifiez si vous avez acquis le contenu des différentes leçons (définition, propriétés, téhorèmpe) en vous exerçant sur des milliers d'exercices de maths disponibles sur Mathovore et chacun de ces exercices dispose de son corrigé.
En complément des cours et exercices sur le thème position relative de deux droites dans l'espace : cours de maths en 1ère S, les élèves de troisième pourront réviser le brevet de maths en ligne ainsi que pour les élèves de terminale pourront s'exercer sur les sujets corrigé du baccalauréat de maths en ligne.

Les dernières fiches mises à jour

Voici les dernières ressources mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

Retrouvez nos cours de maths et exercices corrigés sur notre chaîne YouTube.

Inscription gratuite à Mathovore.  Mathovore c'est 2 006 426 cours et exercices de maths téléchargés en PDF et 167 983 membres.
Rejoignez-nous : inscription gratuite.

videos maths youtube
Mathovore

GRATUIT
VOIR