cours maths 4ème

Initiation à la démonstration : cours de maths en 4ème en PDF.


L’initiation à la démonstration à travers un cours de maths en 4ème. Ce document permet d’aborder la notion de propriété directe et réciproque ainsi que les contre-exemple. Elle est adressée aux enseignants et élèves de collège en quatrième.

I. S’APPROPRIER LE SENS DE LA LOCUTION : «  Si … alors …  »

En mathématiques, pour savoir si une proposition est vraie ou fausse, on utilise certaines règles.

  1. Une proposition mathématique est soit vraie, soit fausse.
  2. Donner des exemples qui vérifient une proposition donnée ne suffit pas à prouver que cette proposition est vraie.
  3. Donner un exemple qui ne vérifie pas une proposition donnée suffit à prouver que cette proposition est fausse. Cet exemple est appelé « contre-exemple »
  4. Dans le domaine géométrique, une constatation ou des mesures sur un dessin ne suffisent pas à prouver qu’une proposition est vraie.

II. Consignes de travail

Je vous propose  ci-dessous 7 propositions mathématiques écrites à partir de la locution « Si…alors… ».

Je vous demande ,premièrement, de prendre position individuellement sur chacune des propositions ( dire si la proposition est vraie ou fausse) puis, d’en débattre au sein du groupe pour éventuellement adopter une position commune. Et, lorsque cela est signalé, d’énoncer la proposition réciproque et de valider ou non cette proposition.

  1. Quels que soient les points A, B et I, si AI = IB alors le point I est milieu du segment [AB] (étude
  2. de la réciproque).
  3. Quelles que soient les droites D et D’, si D est perpendiculaire à D’ alors les droites D et D’ se coupent en un point (étude de la réciproque).
  4. Quel que soit le nombre décimal relatif, si ce nombre est inférieur à 3 alors il est inférieur à 9.
  5. Quels que soient les points A, B et I, si les points A, I et B sont alignés alors I est un point du segment [AB] (étude de réciproque).
  6. Quels que soient les nombres entiers, si la somme de deux nombres est paire alors ces deux nombres sont pairs.
  7. Quel que soit le quadrilatère, si c’est un carré alors c’est un rectangle.
  8. Quels que soient les nombres entiers relatifs, si deux nombres sont consécutifs alors leur produit est un nombre pair.
4.9/5 - (272 votes)
Soyez le premier à commenter (Laisser un commentaire)

Votre email ne sera pas publié.


*


Télécharger et imprimer ce document en PDF gratuitement :

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «initiation à la démonstration : cours de maths en 4ème en PDF.» au format PDF.


D'autres fiches similaires :

Inscription gratuite à Mathovore.  Mathovore c'est 13 896 162 cours et exercices de maths téléchargés en PDF.