Cours maths 4ème

Puissance d’un nombre relatif : cours de maths en 4ème

Puissances d’un nombre relatif avec un cours de maths en 4ème où nous aborderons la définition d’une puissance puis les différentes règles de calculs comme l’inverse d’une puissance, le produit et le quotient de puissances dans cette leçon en quatrième.

Puissance entière d’un nombre relatif :

1. Puissances positives :

a désigne un nombre relatif et n un entier positif non nul.

Définition :

a^n désigne le produit de n factuers tous égaux à a :

a^n=\underbrace{a\times   a\times   .....\times   a\times   a}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n fois

Conventions :
– Pour tout nombre a non nul, a^0=1.- Pour tout nombre aa^1=a.

Exemples :

2^5=2\times   2\times   2\times   2\times   2=32

(-3)^4=(-3)\times   (-3)\times   (-3)\times   (-3)=+81

Cas particuliers :

– Si n=1, a^1=a .

– Si n=2, a^2 se lit a au carré .

– Si n=3, a^3 se lit a au cube.

2. Puissances négatives :

Définition :

a^{-n} désigne l’inverse de a^n.

a^{-n}=\frac{1}{a^n} , où a est un nombre relatif différent de zéro.

Exemples :

2^{-3}=\frac{1}{2^3}=\frac{1}{2\times   2\times   2}=\frac{1}{8}

(-3)^{-2}=\frac{1}{(-3)^2}=\frac{1}{(-3)\times   (-3)}=\frac{1}{9}

3. Produit de puissances :

Propriété :

Soient m,n deux entiers relatifs et a un nombre relatif non nul.

a^m\times   a^n=a^{m+n}

Preuve :

a^m\times   a^n=\underbrace{a\times   a\times   ...a\times   a}\times   \underbrace{a\times   ..\times   a}=\underbrace{a\times   a\times   ....\times   a}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,m\, fois\,\,\,\,\,\,\,\,\,\,\,\,n\,fois\,\,\,\,\,\,\,\,\,\,\,\,m+n\,fois

Exemples :

5^3\times   5^2=5^{3+2}=5^5

7^4\times   7^{-5}=7^{4+(-5)}=7^{-1}

4. Quotient de puissances :

Propriété :

Soient m,n deux entiers relatifs et a un nombre relatif non nul.

\frac{a^m}{a^n}=a^{m-n}

Preuve :

\frac{a^m}{a^n}=a^m\times   \frac{1}{a^n}=a^m\times   a^{-n}=a^{m+(-n)}=a^{m-n}

Exemples :

\frac{2^7}{2^3}=2^{7-3}=2^4

\frac{10^{-15}}{10^3}=10^{-15-3}=10^{-18}

\frac{7^{-4}}{7^{-9}}=7^{-4-(-9)}=7^{-4+9}=7^5


Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «puissance d'un nombre relatif : cours de maths en 4ème» au format PDF.



Télécharger nos applications gratuites avec tous les cours,exercices corrigés Application Mathovore sur Google Play Store. Application Mathovore sur Apple Store.

.

Les dernières fiches mises à jour

Voici les dernières ressources mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

Des cours et exercices corrigés en 4ème en vidéos

Les fiches de cours et exercices de maths les plus consultées Concours : gagnez une calculatrice TEXAS INSTRUMENT (TI)

Nouveau concours avec une calculatrice Texas Instrument à gagner.
Le tirage au sort sera effectué avec un logiciel de manière aléatoire chaque début de mois et les résultats seront annoncés sur notre page facebook.
Les gagnants seront tirés au sort parmi les bonnes réponses de nos abonnés de notre nouvelle chaîne Youtube.


je participe au tirage au sort en m'abonnant à la chaîne YouTube Je participe au concours afin de gagner la calculatrice.

D'autres documents similaires

Inscription gratuite à Mathovore.  Mathovore c'est 1 603 588 cours et exercices de maths téléchargés en PDF et 149 003 membres.
Rejoignez-nous : inscription gratuite.

Mathovore

GRATUIT
VOIR