Calculations and problems: answers to math exercises in 2nd grade in PDF.

corrected by Report an error on this Mathovore page.Report an error / Note?
Answer key for math exercises in 2nd grade on calculations and problems. Develop skills with fractions and powers.

Exercise 1:

Either X=\sqrt{3-2\sqrt{2}}-\sqrt{3+2\sqrt{2}}

a. Show that X<0.

first of all 3-2\sqrt{2}<3+2\sqrt{2}

Let be the function f:x\,\mapsto  \,\sqrt{x}, this function is strictly increasing on %5B0;+\infty%5B.

so 0<3-2\sqrt{2}<3+2\sqrt{2}

\Rightarrowf(0)<f(3-2\sqrt{2})<f(3+2\sqrt{2})

thus

\sqrt{0}<\sqrt{3-2\sqrt{2}}<\sqrt{3+2\sqrt{2}}

and therefore

\sqrt{3-2\sqrt{2}}-\sqrt{3+2\sqrt{2}}<0

b. Calculate X^2.

X^2=(\sqrt{3-2\sqrt{2}}-\sqrt{3+2\sqrt{2}})^2=(\sqrt{3-2\sqrt{2}})^2-2\sqrt{3-2\sqrt{2}}\sqrt{3+2\sqrt{2}}+(\sqrt{3+2\sqrt{2}})^2\\=3-2\sqrt{2}-2\sqrt{(3-2\sqrt{2})(3+2\sqrt{2})}+3+2\sqrt{2}

\\=6-2\sqrt{9-(2\sqrt{2})^2}

\\=6-2\sqrt{9-8}

\\=4

c. Deduce the value of X.There are two possible values X=2 or X=-2

or

from 1 X<0 , we deduce that X = – 2 .

Exercise 2:

Calculate:

A=(-2)^3\times  \,5+3^2\times  \,2^4-5\times  \,2^2

A=-40+144-20=84

B=9\times  \,(\frac{2}{3})^2-(3^2\times  \,2)^4-5\times  \,2^2

B=9\times  \,\frac{4}{9}-3^8\times  \,2^4-20

B=4-104976-20

B=-104992

Exercise 3:

A=1+\frac{3}{4}\times  \,\frac{2}{3}-\frac{1}{6}:\frac{3}{4}

A=1+\frac{2}{4}-\frac{1}{6}\times  \,\frac{4}{3}

A=1+\frac{1}{2}-\frac{2}{9}

A=\frac{18}{18}+\frac{9}{18}-\frac{4}{18}

{\color{DarkRed}\,A=\frac{23}{18}}

B=(7-\frac{3}{2})\times  \,(\frac{25}{7}+\frac{3}{5})

B=(\frac{14}{2}-\frac{3}{2})\times  \,(\frac{25\times  \,5}{7\times  \,5}+\frac{3\times  \,7}{5\times  \,7})

B=\frac{11}{2}\times  \,(\frac{25\times  \,5}{35}+\frac{3\times  \,7}{35})

B=\frac{11}{2}\times  \,(\frac{125}{35}+\frac{21}{35})

B=\frac{11}{2}\times  \,(\frac{146}{35})

B=\frac{11}{2}\times  \,(\frac{2\times  \,73}{35})

B=\frac{11\times  \,73}{35}

B=\frac{803}{35}

Exercise 4:

1. Develop and reduce:

a= (5x+1)(2x+3)

a=10x^2+15x+2x+3

{\color{red}\,a=10x^2+17x+3}

b= (4x-5)(7x-1)

b=28x^2-4x-35x+5

{\color{DarkRed}\,b=28x^2-39x+5}

c= (2x+5)(7x-3)

c=14x^2-6x+35x-15

{\color{DarkRed}\,c=14x^2+29x-15}

d= (-4x-6)(2x-1)

d=-8x^2+4x-12x+6

{\color{DarkRed}\,d=-8x^2-8x+6}

2. Expand and reduce:

e= (5x+1)(2x+3)+(5x+1)(x+2)

e=(10x^2+15x+2x+3)+(5x^2+10x+x+2)

e=(10x^2+17x+3)+(5x^2+11x+2)

{\color{DarkRed}\,e=15x^2+28x+5}

f= (4x-5)(7x-1)-(4x-5)(3x+2)

f=(28x^2-4x-35x+5)-(12x^2+8x-15x-10)

f=(28x^2-39x+5)-(12x^2-7x-10)

f=28x^2-39x+5-12x^2+7x+10

{\color{DarkRed}\,f=16x^2-32x+15}

g= (-4x-6)(2x-1)+(2x-3)(8x-11)

g=(-8x^2+4x-12x+6)+(16x^2-22x-24x+33)

g=-8x^2-8x+6+16x^2-46x+33

{\color{DarkRed}\,g=8x^2-54x+39}

h= (x-8)(5+3x)-(x-8)(7-x)

h=(5x+3x^2-40-24x)-(7x-x^2-56+8x)

h=(3x^2-19x-40)-(-x^2+15x-56)

h=3x^2-19x-40+x^2-15x+56

{\color{DarkRed}\,h=4x^2-34x+16}

Exercise 5:

Frame x^2 when -\sqrt{5}\leq\,\,x<\,1.

then

{\color{DarkRed}\,0\leq\,\,x^2\leq\,\,5}

Exercise 6:

Factor the following expressions:

A=(3x-5)^2+3x-5

A=(3x-5)(3x-5)+(3x-5)\times  ,1

A=(3x-5)%5B(3x-5)+,1%5D

A=(3x-5)(3x-4)

B=-7x(x+2)+14(x+2)

B=(x+2)(-7x+14)

C=(4x-8)^2-(1-x)(4x-8)^3

C=(4x-8)^2%5B1-(1-x)(4x-8)%5D

C=(4x-8)^2%5B1-(4x-8-4x^2+8x)%5D

C=(4x-8)^2(1-4x+8+4x^2-8x)

C=(4x-8)^2(4x^2-12x+9)

C=(4x-8)^2(2x-3)^2

Exercise 7:

A=2\sqrt{3}-4\sqrt{3}+\sqrt{27}

A=2\sqrt{3}-4\sqrt{3}+\sqrt{9\times  ,3}

A=2\sqrt{3}-4\sqrt{3}+3\sqrt{3}

{\color{DarkRed},A=\sqrt{3}}

B=\frac{3-\sqrt{6}}{4-\sqrt{5}}

B=\frac{,(3-\sqrt{6},,)\times  ,,(4+\sqrt{5},,),}{,(4-\sqrt{5},,)\times  ,,(4+\sqrt{5},,)}

B=\frac{,(3-\sqrt{6},,)\times  ,,(4+\sqrt{5},,),}{4^2-\sqrt{5}^2}

B=\frac{12+3\sqrt{5}-4\sqrt{6}-\sqrt{30},}{16-5}

B=\frac{12+3\sqrt{5}-4\sqrt{6}-\sqrt{30},}{11}

Exercise 8:
1. In what form is an even number written ?

2k\,(k\in\mathbb{R}).

2. In what form is an odd number written?

2k+1\,(k\in\mathbb{R}).

3. Show that the square of an even number is an even number.

(2k)^2=4k^2=2\times  \,(2k^2)=2K with K=2k^2\in\mathbb{R}

Conclusion: the square of an even number is an even number.

Exercise 9:
1. Calculate the sum of 5 consecutive integers.

It’s up to you to do some tests.

2. Show that the sum of five consecutive integers is a multiple of 5.

Let x be the smallest integer .

x+(x+1)+(x+2)+(x+3)+(x+4)=5x+1+2+3+4=5x+10=5(x+2)

Either k=x+2

x+(x+1)+(x+2)+(x+3)+(x+4)=5k\,(k\in\mathbb{N})

So the sum of 5 consecutive integers is a multiple of 5.

Exercise 10:
1. Calculate the product of four consecutive integers and add 1.

What do we notice? (Make several attempts)
2x3x4x5+1=121=11²
5x6x7x8+1=1681=41²
6x7x8x9+1=3025=552

2. Show that, for any real x, we have :

x(x\,+\,1)(x\,+\,2)(x\,+\,3)\,+\,1\,=\,(x^2\,+\,3x\,+\,1)^2

Explain the result observed in question 1.

The product of 4 consecutive numbers plus 1 can be written as the square of a number.

Exercise 11:
a. Decompose into the product of prime numbers 220 and 284.

220=2^2\times  \,5\times  \,11

284=2^2\times  \,71

b. Check that 220 and 284 are friendly.

The divisors of 220 are 1;2;4;5;10;11;20;22;44;55;110;220.

The divisors of 284 are 1;2;4;71;142;284

or let’s calculate the sum of the divisors except m :

1+2+4+5+10+11+20+22+44+55+110=284

and

1+2+4+71+142=220

Conclusion: 220 and 284 are two friendly integers.

Exercise 12:

Write in interval form (x\in...):

-5<x\leq\,\,2\,:\,x\in%5D-5;2%5D\\x\geq\,\,\frac{3}{2}\,:\,%5B\frac{3}{2};+\infty%5B\\x\leq\,\,-\frac{1}{4}\,:\,%5D-\infty;-\frac{1}{4}%5D\\x>-5\,et\,x\leq\,\,3,5\,:\,%5D-5;3,5%5D

Exercise 13:

A=(2x+5)^2+(2x+5)(x-4)+2x+5

1. Hervé must factor A.

Here’s his answer:

{\color{Blue}\,A=(2x+5)(2x+5+x-4)}

{\color{Blue}\,A=(2x+5)(3x+1)}

Test the equality obtained by Hervé for x=0.

What can we conclude from this?

A=(2\times  \,0+5)(3\times  \,0+1)=15

and if we replace 0 in the original expression, we obtain :

A=(-2\times  \,0+5)^2+(2\times  \,0+5)(0-4)+2\times  \,0+5=25-20+5=10

Conclusion : Hervé made a mistake when factoring.

2. To factor A, we can think of writing :

A=(2x+5)^2+(2x+5)(x-4)+(2x+5)1

Then factor A correctly.

A=(2x+5)%5B(2x+5)+(x-4)+1%5D

A=(2x+5)%5B\,2x+5\,+\,x-4\,+1%5D

{\color{DarkRed}\,A=(2x+5)(\,3x+2)}

Exercise 14:

Factor each expression by highlighting a common factor.

A=9a+15=3\times  \,3a+3\times  \,5=3(3a+5)\\B=3x^2-15x=3x\times  \,x-3x\times  \,5=3x(x-5)\\C=8x-x^2(5x-1)=x(8-x(5x-1))\\D=(3x-2)^2-(2x-1)(3x-2)\\=(3x-2)%5B(3x-2)-(2x-1)%5D\\=(3x-2)(3x-2-2x+1)=(3x-2)(x-1)

Exercise 15:

A=(7x+1)^2=49x^2+14x+1\\B=(x-3)^2=x^2-6x+9\\C=(-3-2x)^2=9+12x+4x^2\\D=(5x-4)^2=25x^2-40x+16\\E=(3x+1)(3x-1)=9x^2-1

Exercise 16:

E=\sqrt{(\sqrt{2}-\sqrt{5})^2}-\sqrt{(2\sqrt{2}-\sqrt{5})^2}

E=\,%7C\,\sqrt{2}-\sqrt{5}\,\,%7C-\,%7C\,2\sqrt{2}-\sqrt{5}\,\,%7C

E=\sqrt{5}\,-\sqrt{2}-(2\sqrt{2}-\sqrt{5})

E=\sqrt{5}\,-\sqrt{2}-2\sqrt{2}+\sqrt{5}

E=\sqrt{5}\,-3\sqrt{2}+\sqrt{5}

E=2\sqrt{5}\,-3\sqrt{2}

Exercise 17:
x=\,%7C\,\sqrt{2}-1\,\,%7C=\sqrt{2}-1\,car\,\sqrt{2}>1.

y=\,%7C\,\sqrt{3}-5\,\,%7C=5-\sqrt{3}\,car\,5>\sqrt{3}.

z=\,%7C\,\pi-5\,\,%7C=5-\pi\,car5>\pi.

t=\,%7C\,7-2\pi\,\,%7C=7-2\pi\,car\,7>2\pi.

v=\,%7C\,3-\pi\,\,%7C=\pi-3\,car\,\pi>3.

Exercise 18:

%5B-6;2%5B\cap\,%5D-4;1%5D=%5D-4;1%5D

%5D-1;3%5D\cap\,%5B2;4%5B=%5B2;3%5D

%5D-\infty;4%5B\cap\,%5D2;+\infty%5B=%5D2;4%5B

%5D-\infty;-3%5D\cap\,%5B2;+\infty%5B=\,\emptyset

%5B-1;+\infty%5B\cap\,%5B3;+\infty%5B=%5B3;+\infty%5B

%5D-\infty;2%5D\cap\,%5B2;4%5B=\,\{\,2\,\,\}

Exercise 19:

A=\frac{a^{-4}b^5(ac^2)^3}{(ba^{-2})^5}

A=\frac{a^{-4}b^5a^3c^6}{b^5a^{-10}}

A=\frac{a^{-4}a^3c^6}{a^{-10}}

A=\frac{a^{-1}c^6}{a^{-10}}

A=a^{-1+10}c^6

{\color{DarkRed}\,A=a^{9}c^6}

Exercise 20:

The golden number is the number \phi\,=\frac{1+\sqrt{5}}{2}.

Check the following equalities:

1. \phi^2\,=\phi+1.

\phi\,^2-\phi\,-1=\,(\,\frac{1+\sqrt{5}}{2}\,\,)^2-\,(\frac{1+\sqrt{5}}{2}\,\,)-1=\frac{1+2\sqrt{5}+5}{4}-\frac{2+2\sqrt{5}}{4}-\frac{4}{4}=\frac{1+2\sqrt{5}+5-2-2\sqrt{5}-4}{4}=\frac{0}{4}=0

2. \phi\,=\frac{1}{\phi}+1.

Let’s multiply by \phi:

\phi^2=\frac{1}{\phi}\times  \,\phi+\phi

\phi^2=1+\phi

\phi^2=\phi\,+1 (this is the equality of question 1.)

3. \phi^3\,=2\phi+1

We know that :

\phi^2=\phi\,+1

Let’s multiply this equality by \phi:

\phi^3=\phi^2+\phi

\phi^3=\phi+1+\phi (because \phi^2=\phi+1 )

so

\phi^3=2\phi+1

Exercise 21:
The speed of light is estimated at 3\times  \,10^8 m/s

and the average distance Earth-Sun at 149 million kilometers.

Calculate the time needed for a light signal from the Earth to reach the
Sun.

t=\frac{d}{v}=\frac{149\times  \,10^6\times  \,10^3}{3\times  \,10^8}

t=\frac{149\times  \,10^9}{3\times  \,10^8}

t=\frac{149\times  \,10^1}{3}

{\color{DarkRed}\,t\simeq\,497\,s.}

Answer key for calculation exercises and problems

Exercise 22:

For x=-\frac{1}{2}, calculate :

A=4x^3-2x^2+x+3=4(-\frac{1}{2})^3-2(-\frac{1}{2})^2+(-\frac{1}{2})+3

A=-\frac{4}{8}-\frac{2}{4}-\frac{1}{2}+3

A=-\frac{4}{8}-\frac{4}{8}-\frac{4}{8}+3

A=-\frac{12}{8}+\frac{24}{8}

A=\frac{12}{8}=\frac{3}{2}

B=\frac{x^3-1}{(x-1)(x^2+x+1)}

B=\frac{(-\frac{1}{2})^3-1}{((-\frac{1}{2})-1)((-\frac{1}{2})^2+(-\frac{1}{2})+1)}

B=\frac{(-\frac{1}{2})^3-1}{(-\frac{3}{2})(\frac{1}{4}-\frac{2}{4}+\frac{4}{4})}

B=\frac{-\frac{1}{8}-\frac{8}{8}}{(-\frac{3}{2})(\frac{1}{4}-\frac{2}{4}+\frac{4}{4})}

B=\frac{-\frac{9}{8}}{(-\frac{3}{2})(\frac{3}{4})}

B=\frac{-\frac{9}{8}}{-\frac{9}{8}}

{\color{DarkBlue}\,B=1}

Exercise 23:

Prove that the diagonal of a square of side a is a\sqrt{2}.

In the right-angled triangle ABC at B, according to the direct part of the Pythagorean theorem :

AC^2=AB^2+BC^2

AC^2=a^2+a^2

AC^2=2a^2

AC=\sqrt{2a^2} (a length is positive or zero)

AC=\sqrt{2}\times  \,\sqrt{a^2}

AC=\sqrt{2}a

{\color{DarkRed}\,AC=a\sqrt{2}}

corrected calculations and problems

Exercise 24:

Exercise 25:

Exercise 26:

Exercise 28:
1. For each line, reconstruct the sentence using Si……then …. or …if and only if ….:

a.

IF IT RAINS THEN I take my umbrella.

IF I in the middle of [AB] THEN AI=BI

a\ge\,b IF AND ONLY IFa-b\ge\,0.

IF a\le\,3 THEN \,a\le\,5.

IF AB=AC THEN ABC is isosceles at A.

Exercise 29:
For n natural numbers, compare the following numbers:

\frac{n+1}{n+2}\,\le1\le\frac{n+6}{n+3}\le\frac{n+7}{n+3}

Exercise 30:
Let a\ge\,0\,;\,b\ge\,0,compare the numbers :

Suppose that \,\sqrt{a+b}\le\sqrt{a}+\sqrt{b}
So \,0\le(\sqrt{a+b})^2\le(\sqrt{a}+\sqrt{b})^2
So \,0\le(\sqrt{a+b})^2\le(\sqrt{a}+\sqrt{b})^2
So \,0\le\,a+b\le\,a+b+2\sqrt{a}\sqrt{b}
So \,0\le\sqrt{a}\sqrt{b}
this being always true since \,\sqrt{a}\ge0,\sqrt{b}\ge0

so \,\sqrt{a+b}\le\sqrt{a}+\sqrt{b}

Exercise 31:
1. Complete using the symbols \,\in\,;\notin

a. \sqrt{2}\in%5D1;3%5B

b. \frac{2}{\sqrt{2}}\,\in%5B\sqrt{2};5%5D

2. Specify the interval corresponding to :

a. \,%5B2;5%5D\cup\,%5D-1;7%5D=%5D-1;7%5D

b. %5B-1;\pi%5B\cup\,%5D\sqrt{2};5%5D=%5B-1;5%5D-\{\pi;2}

c. %5B3;+\infty%5B\cup\,%5D0;3%5B\cup\,\{3\}=%5D0;+\infty%5B

Exercise 32:
a.

\,\frac{3}{8}\times  (3-\frac{1}{3})=\frac{3}{8}\times  (\frac{9}{3}-\frac{1}{3})=\frac{3}{8}\times  \frac{8}{3}=1

b.

\frac{1+\frac{1}{2}}{2-\frac{23}{7}}\times  (3-\frac{1}{3})=\frac{\frac{3}{2}}{-\frac{9}{7}}\times  \frac{8}{3}=\frac{3}{2}\times  (-\frac{9}{7})\times  \frac{8}{3}=-\frac{36}{7}

2. Simplify and then write the following fraction in scientific form:

\frac{(6\times  10^{-2})^2\times  \,3^2\times  \,10^{-4}}{3^3\times  \,10^{12}}=\frac{3^2\times  2^2\times  \,3^2\times  10^{-4}\times  \,10^{-4}}{3^3\times  \,10^{12}}=3\times  \,2^2\,\times  \,10^{-8-12}\\=12\times  \,10^{-20}

3. Simplify the following entries:

a. \,\sqrt{343}-10\sqrt{112}+\sqrt{7}=\sqrt{49\times  \,7}-10\sqrt{16\times  \,7}+\sqrt{7}=7\sqrt{7}-40\sqrt{7}+\sqrt{7}=-32\sqrt{7}

b. \,\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=\frac{(\sqrt{3}-\sqrt{2})\times  \,(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})\times  \,(\sqrt{3}-\sqrt{2})}=\frac{(\sqrt{3}-\sqrt{2})^2}{3-2}=3-2\times  \sqrt{2}\times  \sqrt{3}+2\\=5-2\sqrt{6}

c. \,(1-2\sqrt{2})^2=1-2\times  2\sqrt{2}+(2\sqrt{2})^2=1-4\sqrt{2}+8\\=9-4\sqrt{2}

4. Give the prime factor product decomposition of the number A=34\times  \,12=2\times  17\times  2^2\times  3=2^3\times  3\times  17.

Exercise 33:
a. Indicate the nature of the following numbers:

A=1+\frac{1}{3} : rational B=\frac{\frac{5}{3}}{\frac{2}{9}}: rational

C=\sqrt{7^{500}}: integer D=1+\pi: irrational

b. Simplify the writing of the following number:

\,A=(3\sqrt{2}+5\sqrt{2})(3\sqrt{6}-2\sqrt{2})=8\sqrt{2}(3\sqrt{6}-2\sqrt{2})=24\sqrt{12}-16\times  2\\=24\sqrt{4\times  3}-32=48\sqrt{3}-32

Answer key to the exercises on calculations and problems in 2nd grade.
After having consulted the answers to these exercises on calculations and problems in grade 2, you can return to the exercises ingrade 2.

Cette publication est également disponible en : Français (French) Español (Spanish) العربية (Arabic)


Download and print this document in PDF for free

You have the possibility to download then print this document for free «calculations and problems: answers to math exercises in 2nd grade in PDF.» in PDF format.



Other documents in the category corrected by


Download our free apps with all corrected lessons and exercises.

Application Mathovore sur Google Play Store.    Application Mathovore sur Apple Store.     Suivez-nous sur YouTube.

Other forms similar to calculations and problems: answers to math exercises in 2nd grade in PDF..


  • 94
    Operative priorities and calculations: answers to exercises in 5th grade in PDF.The answer key to the math exercises in 5th grade on operating priorities and operations. Know the priority rules for the four operations. Exercise 1: Calculate the following expressions by writing the intermediate steps: a) 7 + 4 x8 =7+32=39 b) 3 x11 - 7x4 =33-28=5 c) 37 - 6…
  • 93
    Literal calculation: answer key to 5th grade math exercises in PDF.The answer key to the 5th grade math exercises on literal calculation. Simplify and reduce literal expressions using simple distributivity. Exercise 1: Exercise 2: Let be the expression . Calculate the value of E for : a) ; b) ; c) . Exercise 3: A = 13xz= B= 4x5 =…
  • 93
    Barycenter: answer key to 1st grade math exercises in PDF.The answer key to the math exercises in 1st grade on the barycenter n weighted points. Use the stability and associativity properties of the barycenter in first grade. Exercise 1: It is up to you to make these constructions knowing that the barycenter is necessarily aligned with points A and…


Les dernières fiches mises à jour.

Voici les dernières ressources similaires à calculations and problems: answers to math exercises in 2nd grade in PDF. mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

  1. Abonnements
  2. Maths : cours et exercices corrigés à télécharger en PDF.
  3. Subscriptions
  4. Suscripciones
  5. الاشتراكات

Free registration at Mathovore.  On Mathovore, there is 13 703 248 math lessons and exercises downloaded in PDF.

Mathovore

FREE
VIEW