Integral calculus: answer key to senior math exercises in PDF.

corrected by Report an error on this Mathovore page.Report an error / Note?
The answer to the math exercises in the final year of high school on the calculation of an integral using an intermediate integral, as well as the property of linearity (additivity).

Exercise 1:

Calculate

I=\,\int_{1}\;^{2}\frac{1+x^2}{1+x}dx

by looking for an intermediate integral of the form

J\,=\,\int_{1}\;^{2}\frac{f(x)}{g(x)}dx that will easily fit in.

We consider the integral:

J=\,\int_{1}\;^2\,\frac{2x}{x+1}dx\,=\,%5B2ln(x+1)%5D_{1}^2\,=\,2ln\frac{3}{2}

Let’s calculate:

I\,+\,J\,=\,\int_{1}\;^2\,\frac{1+x^2}{1+x}dx\;\,+\,\int_{1}\;^2\frac{2x}{x+1}\,dx=\,\int_{1}\;^2\,\frac{1+x^2+2x}{x+1}\,dx=\,\int_{1}\;^2\frac{(x+1)^2}{x+1}dx\,=\int_{1}\;^2\,(x+1)dx\,=\,%5B\frac{x^2}{2}\,+x%5D_{1}^2\,=\frac{5}{2}

so

I\,=\,\frac{5}{2}-2ln(\frac{3}{2})

Exercise 2:

Calculate these integrals by integrating by partials:

A. \int_{0}^{3}x\sqrt{3-x}dx.

Let u=x u’=1

v'=\sqrt{3-x} and v=-\frac{2}{3}(3-x)^{\frac{^3}{2}}

A=%5B-\frac{2}{3}x(3-x)^{\frac{3}{2}}%5D+\int_{0}^{3}\,\frac{2}{3}(3-x)^{\frac{3}{2}}dx

A=0+\,\frac{2}{3}\int_{0}^{3}(3-x)^{\frac{3}{2}}dx

A=\frac{2}{3}%5B-\frac{2}{5}(3-x)^{\frac{5}{2}}%5D

A=-\frac{2}{3}\times  \,\frac{2}{5}%5B(3-x)^{\frac{5}{2}}%5D

A=-\frac{4}{15}\times  \,\,(\,-3^{\frac{5}{2}}\,\,)

A=\frac{4}{15}\times  \,3^{\frac{5}{2}}

A=\frac{4}{15}\times  \,3^2\times  \,3^{\frac{1}{2}}

{\color{DarkRed}\,A=\frac{12}{5}\sqrt{3}}

Exercise 3:

Let f be the function defined on \mathbb{R}^{+*} by f(x)=\frac{1}{x}+\frac{lnx}{x}.

What is the derivative of f on \mathbb{R}^{+*}?

f'(x)=-\frac{1}{x^2}+\frac{\frac{1}{x}\times  \,x-lnx\times  \,1}{x^2}

f'(x)=-\frac{1}{x^2}+\frac{1-lnx}{x^2}

f'(x)=\frac{-1+1-lnx}{x^2}

f'(x)=-\frac{lnx}{x^2}

Exercise 4:

Unfair

Integrals

Exercise 5:

Rational function

Rational function

Rational function

Exercise 6:

Consider the sequence (\,U_n) defined, for any natural number n , by :

U_n=\int_{0}^{1}\frac{e^{-nx}}{1+e^{-x}}dx

1.

a. Show that U_0+U_1=1.

b. Calculate U_1, deduce U_0.

2. Show that, for any natural number n, U_n\geq\,\,0.

3.

a. Show that, for any non-zero natural number n,

U_{n+1}+U_n=\frac{1-e^{-n}}{n}

b. Deduce that, for any non-zero natural number n,

U_n\leq\,\,\frac{1-e^{-n}}{n}

4. Determine the limit of the sequence (\,U_n).

Exercise 7:

Integration

Integration

Integration

Exercise 8:

Trigonometric functions

Exercise 9:

Calculate:

I=\int_{1}^{x}(t^2-t)ln\,t\,dt

Let’s ask:

u=lnt\,\,u'=\frac{1}{t} and v'=t^2-t\,\,\,\,v=\frac{t^3}{3}-\frac{t^2}{2}

I=,%5B,(\frac{t^3}{3}-\frac{t^2}{2})lnt,,%5D-\int_{1}^{x}\frac{1}{t}\times  ,(\frac{t^3}{3}-\frac{t^2}{2})

I=(\frac{x^3}{3}-\frac{x^2}{2})lnx\,,-\int_{1}^{x}\frac{1}{t}\times  ,(\frac{t^3}{3}-\frac{t^2}{2})

I=(\frac{x^3}{3}-\frac{x^2}{2})lnx\,,-\int_{1}^{x},\frac{t^2}{3}-\frac{t}{2}

I=(\frac{x^3}{3}-\frac{x^2}{2})lnx\,,-,%5B,\frac{t^3}{9}-\frac{t^2}{4},%5D

I=(\frac{x^3}{3}-\frac{x^2}{2})lnx\,,-(,\frac{x^3}{9}-\frac{x^2}{4}-\frac{1}{9}+\frac{1}{4})

I=(\frac{x^3}{3}-\frac{x^2}{2})lnx\,,-\frac{x^3}{9}+\frac{x^2}{4}+\frac{1}{9}-\frac{1}{4}

I=(\frac{x^3}{3}-\frac{x^2}{2})lnx\,,-\frac{x^3}{9}+\frac{x^2}{4}-\frac{5}{36}

Exercise 10:

a.

f(x)=-1+x+\frac{x^3}{2}+x^5\,\\\,F(x)=-x+\frac{x^2}{2}+\frac{x^4}{8}+\frac{x^6}{6}+k\,\,(k\,\in\,\mathbb{R}\,).

b.

f(x)=(x-1)^2(x+1)=(x-1)(x^2-1)=x^3-x^2-x+1\,\\\,F(x)=\frac{x^4}{4}-\frac{x^3}{3}-\frac{x^2}{2}+x+k\,\,(k\,\in\,\mathbb{R}\,).

c.

f(x)=\frac{5}{4}x+\frac{7}{3}x^2+{1}{2}x^4\,\\\,F(x)=\frac{5}{8}x^2+\frac{7}{9}x^3+\frac{12}{5}x^5+k\,\,(k\,\in\,\mathbb{R}\,).

d.

f(x)=x+\frac{1}{\sqrt{x}}\,\\\,F(x)=\frac{x^2}{2}+2\sqrt{x}+k\,\,(k\,\in\,\mathbb{R}\,).

d.

f(x)=-\frac{1}{x^2}+\frac{1}{x^3}\,\\\,F(x)=\frac{1}{x}+\frac{-1}{2x^2}+k\,\,(k\,\in\,\mathbb{R}\,).

e.

f(x)=\frac{-3}{(3x-1)^2}\,.

F(x)=-\frac{1}{(3x-1)}+k\,\,(k\,\in\,\mathbb{R}\,).

f.

f(x)=cos(x)+sin(x)\,.

F(x)=sin(x)-sin(x)+k\,\,(k\,\in\,\mathbb{R}\,).

g.

f(x)=\frac{-3}{\sqrt{6x+7}}\,.

F(x)=\frac{-\sqrt{6x+7}}{2}+k\,\,(k\,\in\,\mathbb{R}\,).

h.

f(x)=\frac{1}{cos^2(x)}+cos\,x\,.

F(x)=tan\,x\,+\,sinx+k\,\,(k\,\in\,\mathbb{R}\,).

i.

f(x)=ln(x)\,.

F(x)=xln(x)-x+k\,\,(k\,\in\,\mathbb{R}\,).

j.

f(x)=sinx\times  \,cos^2\,x\,.

F(x)=-\frac{\,cos^3\,x}{3}+k\,\,(k\,\in\,\mathbb{R}\,).

k.

f(x)=sin(-3x+1)\,.

F(x)=\frac{cos(-3x+1)}{3}+k\,\,(k\,\in\,\mathbb{R}\,).

l.

f(x)=\frac{3x}{(x^2+1)^2}\,.

F(x)=-\frac{3}{2(x^2+1)}+k\,\,(k\,\in\,\mathbb{R}\,).

m.

f(x)=\frac{-1}{sin^2\,x}=\frac{-cos^2\,x-sin^2\,x}{sin^2\,x}\,.

F(x)=\frac{cos\,x}{sin\,x}+k=\frac{1}{tanx}+k=cotan\,x+k\,\,(k\,\in\,\mathbb{R}\,).

Exercise 12:
We consider three real numbers a,b,c such that, for all \,x\in\,%5D0;+\infty%5B:

\,\frac{1}{x(1+x)^2}=\frac{a}{x}+\frac{b}{1+x}+\frac{c}{(1+x)^2} .

\,\frac{1}{x(1+x)^2}=\frac{a(1+x)^2}{x(1+x)^2}+\frac{bx(1+x)}{x(1+x)^2}+\frac{cx}{x(1+x)^2} .

\,\frac{1}{x(1+x)^2}=\frac{(a+b)x^2+(2a+b+c)x+a}{x(1+x)^2} .

By identification, we obtain the system :

{a+b\,=\,0\,\\\,2a+b+c\,=\,0\,\\\,a\,=\,1\,

{b\,=\,-1\,\\\,c\,=\,-1\,\\\,a\,=\,1\,

so

\,\frac{1}{x(1+x)^2}=\frac{1}{x}-\frac{1}{1+x}-\frac{1}{(1+x)^2}

2. Let \,X\ge\,1.

a. Calculate

\,\int_{1}^{X}\,\frac{dx}{x(1+x)^2}=\int_{1}^{X}\,\frac{1}{x}-\frac{1}{1+x}-\frac{1}{(1+x)^2}dx .

\,=%5Bln(x)-ln(1+x)+\frac{1}{1+x}%5D

\,=ln(X)-ln(1+X)+\frac{1}{1+X}+ln\,2\,-\frac{1}{2}

\,=ln(\frac{X}{1+X})+\frac{1}{1+X}+ln\,2\,-\frac{1}{2}

b. Let f be the function defined on \,x\in\,%5B1;+\infty%5B by \,f(X)=\int_{1}^{X}\,\frac{ln\,x}{(1+x)^3}dx

By integrating by parts, calculate f(X) as a function of X .

Let’s ask:

u(x)= lnx then \,u'(x)=\frac{1}{x}

\,v'(x)=\frac{1}{(1+x)^3 then v(x)=\,\frac{-1}{2(1+x)^2}

So:

\,f(X)=\int_{1}^{X}\,\frac{ln\,x}{(1+x)^3}dx=%5B\frac{-lnx}{2(1+x)^2}%5D+\int_{1}^{X}\,\frac{1}{2x(1+x)^2}dx

\,f(X)=\int_{1}^{X}\,\frac{ln\,x}{(1+x)^3}dx=\frac{-lnX}{2(1+X)^2}+\frac{1}{2}\int_{1}^{X}\,\frac{1}{x(1+x)^2}dx

\,f(X)=\int_{1}^{X}\,\frac{ln\,x}{(1+x)^3}dx=\frac{-lnX}{2(1+X)^2}+\frac{1}{2}(ln(\frac{X}{1+X})+\frac{1}{1+X}+ln\,2\,-\frac{1}{2})

\,f(X)=\int_{1}^{X}\,\frac{ln\,x}{(1+x)^3}dx=\frac{-lnX}{2(1+X)^2}+\frac{1}{2}(ln(\frac{X}{1+X})+\frac{1}{1+X})+\frac{1}{2}(ln\,2\,-\frac{1}{2})

c. gold :

\,\lim_{X\,\to\,+\infty}\,\frac{-lnX}{2(1+X)^2}+\frac{1}{2}(ln(\frac{X}{1+X})+\frac{1}{1+X})=0

therefore:

\,\lim_{X\,\to\,+\infty}\,f(X)=\frac{1}{2}(ln2-\frac{1}{2})

Exercise 14:
Calculate the proposed integral:

a.

b. \int_{-1}^{2}-x+6dx=%5B-\frac{x^2}{2}+6x%5D=-\frac{2^2}{2}+12+\frac{1}{2}+6=16,5

c. \int_0^{4}\,(2x^2+8x-1)\,dx=%5B2\frac{x^3}{3}+4x^2-x%5D\\=2\times  \frac{4^3}{3}+4\times  \,4^2-4\,-2\times  \frac{0^3}{3}-4\times  \,0^2+0\\=\frac{128}{3}+64-4=\frac{308}{3}.

d. \int_0^{\frac{2\pi}{3}}\,(cosx)\,dx=%5Bsin\,x%5D\\=\sin{\,\frac{2\pi}{3}}\,-sin\,0\,=-\frac{\sqrt{3}}{2}.

e. \int_{-2}^{0}\,(x^5+4x^3+x^2-x)\,dx\,=%5B\frac{x^6}{6}+x^4+\frac{x^3}{3}-\frac{x^2}{2}%5D\\=\frac{0^6}{6}+0^4+\frac{0^3}{3}-\frac{0^2}{2}\,-\frac{(-2)^6}{6}-(-2)^4-\frac{(-2)^3}{3}+\frac{(-2)^2}{2}\,\\=-\frac{64}{6}-16-\frac{8}{3}+2=-\frac{66}{3}.

f. \int_1^{3}\,(\frac{1}{x^2})\,dx\,\\=\,%5B-\frac{1}{x}%5D=-\frac{1}{3}+\frac{1}{1}=\frac{2}{3}.

g. \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}}(\frac{1}{cos^2\,x})\,dx\\=2\times  \,\int_{0}^{\frac{\pi}{4}}(\frac{1}{cos^2\,x})\,dx=2\times  \,%5Bln(cos\,x)%5D=2ln(\frac{\sqrt{2}}{2}).

h. \int_{3}^{4}(\frac{1}{\sqrt{2x+5}})\,dx=%5B\sqrt{2x+5}%5D\\=\sqrt{2\times  \,4+5}-\sqrt{2\times  \,3+5}\\=\sqrt{13}-\sqrt{11}.

Exercise 15:

Either f(x)=x^2+1\,\,.

\int_{-1}^{0}(x^2+1)\,dx=%5B\frac{x^3}{3}+x%5D=\frac{0^3}{3}+0-\frac{(-1)^3}{3}+1=\frac{2}{3}.

Exercise 16:

We consider

\int_a^{b}\,f(x)\,dx=5\,\,. and \int_a^{b}\,g(x)\,dx=3\,\,.

a.\int_a^{b}\,(2f(x)-4g(x))\,dx=-2\,\,.

b. \beta\,=6.

Exercise 17:

\int_{-5}^{5}\,(x^3-tan\,x)\,dx=0\,\,.

because the function is odd on the interval [-5;5] centered in 0.

Answers to the exercises on integrals in high school.

After having consulted the answers to these exercises on integral calculus in the final year of high school, you can return to the exercises in the final year of high school.

Senior year exercises.

Cette publication est également disponible en : Français (French) Español (Spanish) العربية (Arabic)


Download and print this document in PDF for free

You have the possibility to download then print this document for free «integral calculus: answer key to senior math exercises in PDF.» in PDF format.



Other documents in the category corrected by


Download our free apps with all corrected lessons and exercises.

Application Mathovore sur Google Play Store.    Application Mathovore sur Apple Store.     Suivez-nous sur YouTube.

Other forms similar to integral calculus: answer key to senior math exercises in PDF..


  • 89
    Fractions and Calculations: 4th grade math worksheet PDF.The answer key to the 4th grade math exercises on fractions. Know how to calculate with addition, subtraction, multiplication, division and solve problems involving fractions. Exercise 1: Exercise 2: Exercise 3: Exercise 4: Exercise 5: Exercise 6:   Exercise 7: Exercise 8: 1) What fraction of the money did he…
  • 87
    Volumes and sections: corrected 3rd grade math exercises in PDF.Answers to the math exercises in 3ème on the calculation of volumes and the study of solid sections in space. To know by heart the formulas of volumes (right block, cube, prism, cone of revolution, ball, cylinder and pyramid) and to study sections of solids in third grade. Exercise 10:…
  • 84
    Functions: answer key to the exercises in 3ème in PDF.Read image and antecedent from the representative curve of a function. Third grade math exercises on the generalities of functions. Exercise 1: a. We have h(0)= - 1. b. The numbers 2 and - 2 have as image 0 by the function f. c. h(4)=3.5 and h(-3)=1.2 . Exercise 2:…


Les dernières fiches mises à jour.

Voici les dernières ressources similaires à integral calculus: answer key to senior math exercises in PDF. mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

  1. Abonnements
  2. Maths : cours et exercices corrigés à télécharger en PDF.
  3. Subscriptions
  4. Suscripciones
  5. الاشتراكات

Free registration at Mathovore.  On Mathovore, there is 13 703 218 math lessons and exercises downloaded in PDF.

Mathovore

FREE
VIEW