Nombres relatifs et repérage : cours de maths en 5ème en PDF.

webmaster
23 avril 2025

Les nombres relatifs avec un cours de maths en 5ème faisant intervenir la définition et les propriétés des nombres relatifs ainsi que la comparaison et le placement sur une  droite graduée. Dans le plan, nous nous intéresserons aux coordonnées puis nous terminerons cette leçon par l’addition et la soustraction de deux nombres relatifs en cinquième.

I. Introduction :

Définition :

Il existe un nouvel ensemble de nombres : les nombres relatifs .Il y en a deux sortes :

  • – Les nombres relatifs positifs : mathematiques;
  • – Les nombres relatifs négatifs : mathematiques.
Situations :

Ces nombres relatifs sont utilisés dans de nombreux cas :

  •  Frises chronologiques en histoire;
  •  Les températures ;
  •  Les découverts à la banque ;
  •  Les altitudes ( au-dessus ou en-dessous du niveau de la mer).
  •  le déplacement du lutin dans Scratch.

Remarque :

La calculatrice connaît les nombres relatifs ainsi que toutes les priorités opératoires

et elle sait également effectuer des calculs avec les nombres relatifs.

II.Repérage et droite graduée :

1. définition :

Définition :

Les nombres relatifs regroupent les nombres positifs et les nombres négatifs.

Ils sont composés de deux éléments :

  •  leur signe;
  •  leur partie numérique (appelée également, sur une droite graduée, la distance à zéro)

Remarque :

La distance à zéro est la distance qui sépare un nombre relatif à zéro.

Exemples :

La distance à zéro de mathematiques est mathematiques.

La distance à zéro de mathematiques est mathematiques.

2. Repérage sur une droite graduée :

Définition :

On peut utiliser les nombres relatifs pour repérer des points sur une droite graduée.

Il faut d’abord choisir un repère de deux points O et I auxquels on fait correspondre les nombres 0 et 1.

O s’appelle l’origine du repère.

La distance OI est l’unité du repère donc OI = 1.

A chaque point du repère on fait correspondre un nombre relatif appelé abscisse de ce  point .

Exemple :

Le point A a pour abscisse mathematiques

et   mathematiques se lit le point A d’abscisse mathematiques

La distance à zéro du point A est mathematiques.

Remarque :

Deux point A et B symétriques par rapport à l’origine O du repère de la droite graduée ont la même distance à zéro.

 3. Nombres opposés :

Définition :

L’opposé d’un nombre relatif est le nombre :

  • qui a la même partie numérique ( ou distance à zéro);
  •  qui est de signe contraire.

Exemples :

mathematiques est l’opposé du nombre relatif mathematiques.

mathematiques est l’opposé du nombre relatif mathematiques.

Propriété:

Deux nombres opposés sont représentés par des points qui seront symétriques par rapport à l’origine sur une droite graduée.

III. Comparaison de nombres relatifs :

1. Nombres relatifs de signes différents :

Propriété:

Un nombre relatif négatif est toujours inférieur à un nombre relatif positif.

Exemples :

2. Nombres relatifs positifs :

Propriété:

Si deux nombres relatifs sont positifs alors le plus grand est celui qui a la plus grande partie numérique (ou distance à zéro).

Exemples :

mathematiques

mathematiques

3. Nombres relatifs négatifs :

Propriété:

Si deux nombres relatifs sont négatifs alors le plus grand est celui qui a la plus petite partie numérique (ou distance à zéro).

Exemples :

mathematiques

mathematiques

mathematiques

Addition et soustraction de nombres relatifs :

1. Addition de deux nombres relatifs :

Propriété:

La somme de deux nombres relatifs opposés est nulle.

Exemple :

mathematiques

mathematiques

Règle n° 1 :

Si les deux nombres relatifs ont le même signe alors la somme de ces deux nombres relatifs :

– a comme signe, le signe en commun;

– a pour partie numérique la somme des deux parties numériques .

Exemples :

Règle n° 2 :

Si les deux nombres relatifs sont de signe différents alors la somme est le nombre relatif :

– qui a le même signe que celui qui a la plus grande partie numérique;

– qui a pour partie numérique la différence de la plus grande partie numérique et de la plus petite.

Exemples :

mathematiques

mathematiques

2. Soustraction de deux nombres relatifs :

Propriété:

Soustraire un nombre relatif, c’est ajouter son opposé.

Exemples :

mathematiques

mathematiques

mathematiques

3. Calculs d’expressions numériques :

Règles :

Afin de calculer des expressions numériques, il faut  transformer les soustractions en additions,

puis appliquer les règles de calculs précédentes, en effectuant les calculs dans le sens de la lecture.

On ne note pas un signe + en début de ligne.

Exemples :

Calculer

 

Vous avez assimilé le cours sur les nombres relatifs en 5ème ?

Effectuez ce QCM de maths en cinquième sur les nombres relatifs afin d’évaluer vos acquis sur cette leçon.

Les nombres relatifs et le repérage

 

Symétrie centrale et centre de symétrie : cours de maths en 5ème en PDF.

La symétrie centrale avec un cours de maths en 5ème où nous aborderons la définition et la  construction de la symétrie centrale d’un point, puis d’une figure.Cette leçon fait également intervenir les propriétés de conservation de la symétrie centrale sur les mesures d’angles, les longueurs de segments ou encore sur les périmètres et les aires […]

Priorités opératoires : cours de maths en 5ème en PDF.

Priorités opératoires avec un cours de maths en 5ème sur les quatre opérations et les règles de priorité. Cette fiche de leçon fait également intervenir les calculs contenant des parenthèses ainsi que des parenthèses emboîtées puis les priorités de la multiplication et division par rapport à l’addition et la soustraction en cinquième. I. Vocabulaire : […]

Les statistiques : cours de maths en 5ème en PDF.

Les statistiques et les représentations graphiques (diagramme circulaire, en bâtons ) ainsi que le calcul de fréquence, de la moyenne et de la médiane. Ce cours de maths en 5ème est destiné aux élèves de cinquième. I.Série statistique 1.Vocabulaire Définitions : L’effectif d’une valeur est le nombre de fois où cette valeur apparaît dans la […]

Notez Mathovore !

Votre avis est précieux pour nous aider à améliorer l'application

share Partager