Généralités sur les fonctions numériques : cours de maths en 2de en PDF.

webmaster
17 avril 2025

Les généralités sur les fonctions numériques dans un cours de maths en 2de où nous étudierons les opérations sur les fonctions ainsi que les  égalités. dans cette leçon en seconde, nous aborderons le sens de variation d’une somme, produit et composée de fonctions numériques.

I. Opérations algébriques sur les fonctions :

1. Egalité :

Définition :

Dire que deux fonctions f et g sont égales, ce que l’on note alors f = g, signifie qu’elles ont le même ensemble de définition D et que, pour tout x de D, f(x) = g(x).

2. Opérations :

Propriété :

Soient f et g deux fonctions définies respectivement sur Df et Dg.
Opérations :

Opération Notation Definition Definie pour :
Somme f+g
Différence f-g x  f(x)-g(x)
Produit fg x  f(x)g(x)
quotient x

3. Composition de fonctions :

Définition :

Etant donné deux fonction f et g, la fonction gof (lire « g rond f ») est la fonction definie par

L’ensemble de définition de gof est constitué de tous les nombres x tels que x soit dans Df et f(x) soit dans Dg.

Exemple :

f est la fonction définie sur R par f(x)=x-2 et g est la fonction carrée.
Dans g(x), on remplace x par f(x).
Alors g(f(x))= (x-2)²
Donc gof est la fonction x   (x-2)² définie sur R.

II. Sens de variation:

1. Sens de variation d’une somme de fonction :

Théorème :
  • La somme de deux fonctions strictement croissantes sur un intervalle I est une fonction strictement croissante sur I.
  •  La somme de deux fonctions strictement décroissantes sur un intervalle I est une fonction strictement décroissante sur I.

2. Sens de variation de ku :

Définition :

Soit u une fonction définie sur un intervalle I et k un nombre réel.
ku est la fonction x  ku(x).

Exemple :

si u(x)=x²+3, la fonction 5u (ici k=5) est x  5(x²+3) ainsi (5u)(x)=5x²+15.

Théorème :
  •  Si k>0, u et ku ont le même sens de variation sur I.
  • Si k<0, u et ku varient en sens contraires sur I.

3. Sens de variation d’une composée de fonctions :

Théorème :

Soient f et g deux fonctions strictement monotones, I est un intervalle inclus dans Df,
J un intervalle inclus dans Dg tel que pour tout x dans I, f(x) soit dans J.

  • Lorsque f et g ont même sens de variation, alors gof est strictement croissante sur I.
  •  Lorsque f et g ont des sens de variation différents, alors gof est strictement décroissante sur I.

Vous avez assimilé ce cours sur les généralités sur les fonctions en 2de?

Effectuez ce QCM sur les fonctions numériques en classe de seconde.

Généralité sur les fonctions numériques

Un QCM sur les généralités sur les fonctions numériques en seconde.

Les statistiques : cours de maths en 2de en PDF.

Les statistiques dans un cours de maths en 2de où nous verrons la notion de population, de caractère quantitatif ou qualitatif. Nous aborderons la notion de fréquence et de moyenne pondérée d’une série statistiques ainsi que les différentes représentations graphiques dans cette leçon en seconde. I. Le vocabulaire des statistiques. Introduction :   Les statistiques […]

Les vecteurs et la translation : cours de maths en 2de en PDF.

Les vecteurs et la translation dans un cours de maths en 2de où nous aborderons la définition et les caractéristiques d’un vecteur. Nous représenterons des vecteurs ainsi que la somme puis nous calculerons ses coordonnées ainsi que sa norme. Nous terminerons cette leçon en seconde avec l’étude de la translation et de ses propriétés de […]

Les fonctions numériques : cours de maths en 2de en PDF.

Les fonctions numériques dans un cours de maths en 2de ou nous aborderons le vocabulaire et la définition ainsi que la représentation graphique d’une fonction. Dans cette leçon en seconde, nous étudierons l’image, l’antécédent et la résolution graphique d’équations ainsi que l’étude de tableaux de signe et du sens de variation et des extremums d’une […]

Notez Mathovore !

Votre avis est précieux pour nous aider à améliorer l'application

share Partager