Fonctions polynômes du second degré : cours de maths en 2de en PDF.

webmaster
14 avril 2025

Les fonctions polynômes du second degré dans un cours de maths en 2de.
Cette leçon en seconde traite de la forme canonique, de l’étude d’une fonction trinôme et de sa représentation graphique.
Connaissances du collège nécessaires à ce chapitre

  •  Développer une expression littérale;
  •  Reconnaître un axe de symétrie;
  •  Additionner des fractions;
  •  Multiplier des fractions.

1. Forme canonique

Définition : Fonction polynôme de degré 2
Soit a, b, c trois nombres réels avec fonctions.
On appelle fonction polynôme de degré 2 toute fonction P définie sur \mathbb{R} pouvant être exprimée sous la forme :P(x) = ax^2 + bx + c.
On parle aussi de fonction trinôme.
Propriété
Soit P une fonction polynôme du second degré exprimée sous la forme P(x) = ax^2 + bx + c.
Il existe deux nombres réels α et β permettant d’écrire P sous le forme :
P(x) = a(x - \alpha )^2 +\beta.
Cette forme s’appelle forme canonique.

2. Étude d’une fonction trinôme

Propriété : sens de variations.
Soit a, α, β trois nombres réels et f une fonction polynôme de degré 2 définie sur \mathbb{R} par sa forme canonique f(x) = a(x - \alpha )^2 +\beta.
Le sens de variation d’une fonction dépend du signe de a.

fonction trinôme du second degré

Extremum d’une fonction.
Soit a, \alpha, \beta trois nombres réels.
f une fonction polynôme de degré 2 définie sur \mathbb{R} par sa forme canonique
f (x) = a (x -\alpha )^2 + \beta.
Sur R, la fonction f admet \beta comme extremum. Il est atteint pour x = α.
C’est un maximum si \alpha est négatif.
C’est un minimum si \alpha est positif.
Signe d’une fonction.
Soit a, \alpha, \beta trois nombres réels et f une fonction polynôme de degré 2 définie sur \mathbb{R} par sa
forme canonique f (x) = a (x -\alpha )^2 + \beta.
Le signe d’une fonction trinôme dépend du signe de a et du signe de \beta.
Si a < 0 et \beta \leq 0, alors la fonction est toujours négative.
Si a > 0 et \beta \geq 0 alors la fonction est toujours positive.
Dans les autres cas,
la fonction change de signe sur l’intervalle ] -\infty;\alpha[ ;
la fonction change à nouveau de signe sur l’intervalle]\alpha ;+\infty[.

Méthode : étudier une fonction trinôme du second degré.

Exemple:

On considère la fonction f définie sur \mathbb{R} par f (x) = -2(x - 0, 25)^2 - 8.
Déterminer :
1) son sens de variation ;
2) son extremum;
3) le signe de la fonction.

Correction :

Dans le cas de la fonction f :
• α = 0, 25 • \beta= −8 • a = −2
1) a est négatif donc la fonction f est croissante sur ]-\infty; 0, 25[ et décroissante sinon.
2) Elle admet un maximum en x = \alpha = 0, 25. Il vaut f (0, 25) = −8.

Tableau de variation

3) La fonction f est négative sur \mathbb{R}.

3. Représentation graphique de fonctions

Définition :
La courbe représentative d’une fonction trinôme est une parabole.
Propriété :
Soit a, α, β trois nombres réels et f une fonction trinôme définie sur \mathbb{R} par sa forme canonique
f (x) = a (x -\alpha )^2 + \beta.La courbe représentative de cette fonction est une parabole qui admet un axe de symétrie : la droite d’équation x = \alpha.

Exemple :

Tracer les courbes représentatives des fonctions suivantes :
f (x) = -0, 5(x + 2)^2 + 3
g(x) = 2(x -3)^2 - 2
Donner leurs sens de variations et leur éventuel extremum.

Correction

courbe

La fonction f :
• est croissante sur ]−\infty;−2[ ;
• est décroissante sur ]−2;+\infty[ ;
• elle admet un maximum en −2 qui vaut 3.

La fonction g :
• est décroissante sur ]−\infty; 3[ ;
• est croissante sur ]3;+\infty[ ;
• elle admet un minimum en 3 qui vaut −2.

 

Les statistiques : cours de maths en 2de en PDF.

Les statistiques dans un cours de maths en 2de où nous verrons la notion de population, de caractère quantitatif ou qualitatif. Nous aborderons la notion de fréquence et de moyenne pondérée d’une série statistiques ainsi que les différentes représentations graphiques dans cette leçon en seconde. I. Le vocabulaire des statistiques. Introduction :   Les statistiques […]

Les vecteurs et la translation : cours de maths en 2de en PDF.

Les vecteurs et la translation dans un cours de maths en 2de où nous aborderons la définition et les caractéristiques d’un vecteur. Nous représenterons des vecteurs ainsi que la somme puis nous calculerons ses coordonnées ainsi que sa norme. Nous terminerons cette leçon en seconde avec l’étude de la translation et de ses propriétés de […]

Les fonctions numériques : cours de maths en 2de en PDF.

Les fonctions numériques dans un cours de maths en 2de ou nous aborderons le vocabulaire et la définition ainsi que la représentation graphique d’une fonction. Dans cette leçon en seconde, nous étudierons l’image, l’antécédent et la résolution graphique d’équations ainsi que l’étude de tableaux de signe et du sens de variation et des extremums d’une […]

Notez Mathovore !

Votre avis est précieux pour nous aider à améliorer l'application

share Partager