Corrigé du bac 2024 aux centres étrangers - Sujet n° 2

Mathovore.fr

Exercice 1

 On effectue 3 tirages avec remise dans un ensemble à 8 éléments. Il s'agit donc de déterminer le nombre de 3-listes possibles constitués d'éléments de cet ensemble.

Il existe ainsi $8^3 = 512$ tirages possibles.

2. a. Il s'agit de compter le nombre d'arrangements possibles de 3 éléments dans un ensemble à 8 éléments. Il y a donc $8 \times 7 \times 6 = 336$ tirages sans répétition de numéro.

b. Il y a donc 512-336=176 tirages contenant au moins une répétition de numéro.

3. Nous sommes dans une situation d'équiprobabilité. Donc, pour tout entier k compris entre 1 et 8, tous les deux inclus,

$$P(X_1=k)=\frac{1}{8}$$

Remarque : On dit que X_1 suit la loi uniforme sur l'ensemble des entiers de 1 à 8.

4. L'espérance de X_1 est donc :

$$E(X_1) = \frac{1}{8} \times 1 + \frac{1}{8} \times 2 + \ldots + \frac{1}{8} \times 8$$

$$= \frac{1}{8} (1 + 2 + \ldots + 8)$$

$$= \frac{1}{8} \times \frac{8 \times 9}{2}$$

$$= \frac{9}{2}$$

5. $X_1,\,X_2$ et X_3 suivent la même loi. Elles ont donc la même probabilité.

D'après la linéarité de l'espérance :

$$E(S) = E(X_1 + X_2 + X_3)$$

$$= E(X_1) + E(X_2) + E(X_3)$$

$$= 3E(X_1)$$

$$= \frac{27}{2}$$

6. L'unique façon pour que S=24 est d'obtenir le numéro 8 au trois tirages.

Par conséquent $P(S=24)=rac{1}{512}$

7. a. Si le joueur obtient au plus trois 7 alors la somme des numéros vaut au plus $3 \times 7 = 21$. De même s'il obtient au plus deux 8 et un 5 la somme des numéros vaut 8 + 8 + 5 = 21.

Les seuls tirages permettant d'avoir une somme supérieure ou égale à 22 sont donc :

$$7-7-8$$
 ; $7-8-7$; $8-7-7$; $7-8-8$; $8-7-8$; $8-8-7$; $8-8-8$; $8-8-6$; $8-6-8$ et $6-8-8$

Il existe donc exactement 10 tirages permettant de gagner un lot.

b. La probabilité de gagner un lot vaut donc $\dfrac{10}{512}=\dfrac{5}{256}$

Exercice 2

1. a.
$$\lim_{x\to 1^-} \mathrm{e}^x = \mathrm{e} > 0$$
 et $\lim_{x\to 1^-} x - 1 = 0^-$. Par conséquent $\lim_{x\to 1^-} f(x) = -\infty$.

b. La droite d'équation x=1 est donc une asymptote verticale à la courbe \mathcal{C} .

2.
$$\lim_{x\to -\infty} \mathrm{e}^x = 0$$
 et $\lim_{x\to -\infty} x - 1 = -\infty$. Par conséquent $\lim_{x\to -\infty} f(x) = 0$.

3. a. Par hypothèse, f est dérivable sur $]-\infty;1[$.

Pour tout réel
$$x < 1$$
 on a :

$$f'(x) = \frac{e^x(x-1) - e^x}{(x-1)^2}$$
$$= \frac{e^x(x-1-1)}{(x-1)^2}$$
$$= \frac{e^x(x-2)}{(x-1)^2}$$

b. Pour tout réel $x\leqslant 1$ on a :

•
$$x - 2 < 0$$

•
$$e^x > 0$$

•
$$(x-1)^2 > 0$$

Ainsi, f'(x) < 0 pour tout réel x < 1.

On obtient donc le tableau de variations suivant :

x	$-\infty$	1
f'(x)	_	
f	0	

4. a. Pour tout réel x < 1 on a $e^x > 0$ et $(x - 1)^3 < 0$.

On étudie le signe du polynôme du second degré x^2-4x+5 .

Son discriminant est
$$\Delta = (-4)^2 - 4 \times 5 \times 1 = -4 < 0$$
.

Le signe de ce polynôme ne dépend donc que de celui de son terme principal. Ainsi, $x^2-4x+5>0$ sur $]-\infty;1[$. Donc f''(x)<0 sur $]-\infty;1[$.

La fonction f est par conséquent concave sur $]-\infty;1[$.

b. On a
$$f(0) = -1$$
 et $f'(0) = -2$.
Une équation de T est donc $y = -2x - 1$.

c. f est concave sur] − ∞; 1[. Sa courbe représentative est donc au-dessous de ses tangentes sur cet intervalle.

$$f(x) \leqslant -2x - 1 \Leftrightarrow \frac{\mathrm{e}^x}{x - 1} \leqslant -2x - 1$$

 $\Leftrightarrow \mathrm{e}^x \geqslant (-2x - 1)(x - 1) \qquad \operatorname{car} x - 1 < 0$

5. a. La fonction f est continue (car dérivable) et strictement décroissante sur $]-\infty;1[$.

De plus
$$\lim_{x\to -\infty}f(x)=0$$
 et De plus $\lim_{x\to 1^-}f(x)=-\infty$. Or $-2\in]-\infty;0[$.

Or
$$-2 \in]-\infty;0[$$

D'après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l'équation f(x) = -2 admet une unique solution sur l'intervalle] $-\infty$; 1[.

b. On a
$$f(0,31) pprox -1,976 > -2$$
 et $f(0,32) pprox -2,025 < -2$.

Ainsi
$$f(0,31) > f(\alpha) > f(0,32)$$

Par conséquent $0,31 < \alpha < 0,32$

Exercice 3

- 1. I a pour coordonnées (0,5;0;0) et J a pour coordonnées (1;1;0,5).
- H a pour coordonnées (0; 1; 1), F a pour coordonnées (1; 0; 1) et E a pour coordonnées (0; 0; 1).

Ainsi
$$\overrightarrow{EJ} \begin{pmatrix} 1 \\ 1 \\ -0, 5 \end{pmatrix}$$
, $\overrightarrow{FH} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ et $\overrightarrow{FI} \begin{pmatrix} -0, 5 \\ 0 \\ -1 \end{pmatrix}$.

 \overrightarrow{FH} et \overrightarrow{FI} n'ont pas la même composante nulle. Ils ne sont donc pas colinéaires.

D'une part :
$$\overrightarrow{EJ}$$
. $\overrightarrow{FH} = -1 + 1 + 0 = 0$

D'autre part :
$$\overrightarrow{EJ}$$
. $\overrightarrow{FI} = -0, 5+0+0, 5=0$

 \overrightarrow{EJ} est donc orthogonal à deux vecteurs non colinéaires du plan (FHI). Il est normal à ce plan.

- 3. Une équation cartésienne du plan (FHI) est donc x+y-0, 5z+d=0. Or F(1;0;1) appartient à ce plan. Donc 1+0-0, $5+d=0 \Leftrightarrow d=-0$, 5. Une équation cartésienne du plan (FHI) est par conséquent x+y-0, 5z-0, 5=0. En multipliant cette équation par -2 on obtient alors -2x - 2z + z + 1 = 0.
- 4. Une représentation paramétrique de la droite (EJ) est : $egin{cases} x=t \ y=t \ z=1-0.5t \end{cases}$ avec $t\in\mathbb{R}$.

5. a. Les coordonnées du point K sont donc les solutions du système :

5. a. Les coordonnées du point
$$K$$
 sont donc les solutions du système
$$\begin{cases} x=t \\ y=t \\ z=1-0,5t \\ -2x-2y+z+1=0 \end{cases} \Leftrightarrow \begin{cases} x=t \\ y=t \\ z=1-0,5t \\ -2t-2t+1-0,5t+1=0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x=t \\ y=t \\ z=1-0,5t \\ -4,5t=-2 \end{cases}$$

$$\Leftrightarrow \begin{cases} x=t \\ y=t \\ z=1-0,5t \\ -4,5t=-2 \end{cases}$$

$$\Leftrightarrow \begin{cases} x=\frac{4}{9} \\ x=\frac{4}{9} \\ x=\frac{7}{9} \\ t=\frac{4}{9} \end{cases}$$
 Donc K a pour coordonnées
$$\begin{pmatrix} 4,4,7 \\ -2,$$

Donc K a pour coordonnées $\left(\frac{4}{9}; \frac{4}{9}; \frac{7}{9}\right)$

b. Le triangle EFI est isocèle en I.

Son aire est

$$\mathcal{A} = \frac{EF \times IL}{2}$$

$$= \frac{EF \times AE}{2}$$

$$= \frac{1 \times 1}{2}$$

$$= \frac{1}{2}$$

On appelle M me milieu de [FB]. M est également le projeté orthogonal du point J sur le plan (EFB). Le volume de la pyramide EFHI est donc :

$$V = \frac{\mathscr{A} \times JM}{3}$$
$$= \frac{\frac{1}{2} \times 1}{3}$$
$$= \frac{1}{6}$$

Le volume de la pyramide EFHI est $\frac{1}{6}$ cm³.

c. On a
$$\overrightarrow{EK}$$
 $\begin{pmatrix} \frac{4}{9} \\ \frac{4}{9} \\ -\frac{2}{9} \end{pmatrix}$.

Par conséquent :

$$EK = \sqrt{\left(\frac{4}{9}\right)^2 + \left(\frac{4}{9}\right)^2 + \left(-\frac{4}{9}\right)^2}$$

$$= \sqrt{\frac{16}{81} + \frac{16}{81} + \frac{4}{81}}$$

$$= \sqrt{\frac{36}{81}}$$

$$= \frac{6}{9}$$

$$= \frac{2}{3}$$

Par conséquent, en appelant $\,\mathscr{B}\,$ l'aire du triangle FHI on a :

$$V = \frac{1}{6} \Leftrightarrow \frac{\mathscr{B} \times EK}{3} = \frac{1}{6}$$

$$\Leftrightarrow \mathscr{B} \times \frac{2}{3} = \frac{1}{2}$$

$$\Leftrightarrow \mathscr{B} = rac{3}{4}$$

L'aire du triangle FHI est $\frac{3}{4}~{\rm cm^2}.$

Exercice 4

Partie A

1. Par hypothèse, f est dérivable sur $[0; +\infty[$. Pour tout réel $x\geqslant 0$ on a :

$$f'(x) = \frac{1}{2\sqrt{x+1}}$$

$$> 0$$

f est donc strictement croissante sur $[0; +\infty[$.

2. Pour tout réel $x\geqslant 0$ on a :

$$f(x) - x = \sqrt{x+1} - x$$

$$= \left(\sqrt{x+1} - x\right) \times \frac{\sqrt{x+1} + x}{\sqrt{x+1} + x}$$

$$= \frac{x+1-x^2}{\sqrt{x+1} + x}$$

$$= \frac{-x^2 + x + 1}{\sqrt{x+1} + x}$$

D'après la question précédente, sur [0; +∞[:

Le discriminant de cette équation du second degré est $\Delta=1^2-4\times1\times(-1)=5>0$.

Elle possède donc deux solutions
$$x_1=\dfrac{-1-\sqrt{5}}{2}=\dfrac{1+\sqrt{5}}{2}>0$$
 et $x_2=\dfrac{-1+\sqrt{5}}{2}=\dfrac{1-\sqrt{5}}{2}<0$.

L'équation f(x)=x admet donc une unique solution sur $[0;+\infty[$ qui est $\dfrac{1+\sqrt{5}}{2}$.

Remarque: Il s'agit du nombre d'or!

Partie B

1. Pour tout entier naturel n on note P(n): $1 \leqslant u_{n+1} \leqslant u_n$.

Initialisation : $u_1 = \sqrt{6}$. Or $1 < \sqrt{6} < 5$.

Donc $1\leqslant u_1\leqslant u_0$ et P(0) est vraie.

Hérédité : Soit n un entier naturel. On suppose que P(n) est vraie.

 $1 \leqslant u_{n+1} \leqslant u_n$.

La fonction f est croissante sur $[0; +\infty[$.

Par conséquent $f(1) \leqslant f(u_{n+1}) \leqslant f(u_n)$

Soit $\sqrt{2} \leqslant u_{n+2} \leqslant u_{n+1}$. Or $1 \leqslant \sqrt{2}$.

Donc $1\leqslant u_{n+2}\leqslant u_{n+1}$ et P(n+1) est vraie.

Conclusion : D'après le principe de récurrence, pour tout entier naturel n on a $1 \leqslant u_{n+1} \leqslant u_n$.

- La suite (u_n) est donc décroissante et minorée par 1. D'après le théorème de la limite monotone; elle converge.
- 3. (u_n) converge et pour tout entier naturel n on a $u_{n+1} = f(u_n)$ avec f continue (car dérivable) sur $[0; +\infty[$. De plus, pour tout $n \in \mathbb{N}$ on a $u_n \geqslant 1 > 0$.

Par conséquent la limite L de cette suite est solution de l'équation f(x) = x dont l'unique solution sur $[0; +\infty[$ est ℓ . (u_n) converge donc vers ℓ .

- a. D'après la calculatrice seuil(2) renvoie 5.
 - b. Cela signifie que u_9 est une approximation de ℓ à au moins 10^4 près.