Durée 2h ; Calculatrice autorisée

Exercice n°1

Le secteur de production d'une entreprise est composé de 3 catégories de personnel :

les ingénieurs ; les opérateurs de production; les agents de maintenance.

Il y a 8 % d'ingénieurs et 82 % d'opérateurs de production.

Les femmes représentent 50 % des ingénieurs, 25 % des agents de maintenance et 60 % des opérateurs de production.

Les parties A et B sont indépendantes

Partie A

Dans cette partie, on interroge au hasard un membre du personnel de cette entreprise. On note:

- M l'évènement : « le personnel interrogé est un agent de maintenance » ;
- O l'évènement : « le personnel interrogé est un opérateur de production »;
- I l'évènement : « le personnel interrogé est un ingénieur »;
- F l'évènement : « le personnel interrogé est une femme ».
- 1. Construire un arbre pondéré correspondant aux données.
- 2. Calculer la probabilité d'interroger:
 - a) un agent de maintenance;
 - **b)** une femme agent de maintenance;
 - c) une femme.

Partie B

Le service de maintenance effectue l'entretien des machines, mais il est appelé aussi à intervenir en cas de panne. Pour cela une alarme est prévue ; des études ont montré que sur une journée :

- la probabilité qu'il n'y ait pas de panne et que l'alarme se déclenche est égale à 0,002 ;
- la probabilité qu'une panne survienne et que l'alarme ne se déclenche pas est égale à 0,003 ;
- la probabilité qu'une panne se produise est égale à 0,04.

On note:

- A l'évènement : l'alarme se déclenche ;
- B l'évènement : une panne se produit ;
- 1. Démontrer que la probabilité qu'une panne survienne et que l'alarme se déclenche est égale à 0,037.
- 2. Calculer la probabilité que l'alarme se déclenche.
- 3. Calculer la probabilité qu'il y ait une panne sachant que l'alarme se déclenche.

Exercice 2:

L'algorithme ci-dessous permet de calculer le terme de rang $n \ (n \ge 1)$ d'une suite (u_n) .

```
Variables:

n, i: entiers
u: réel

Début:

Entrer n
u prend la valeur 1

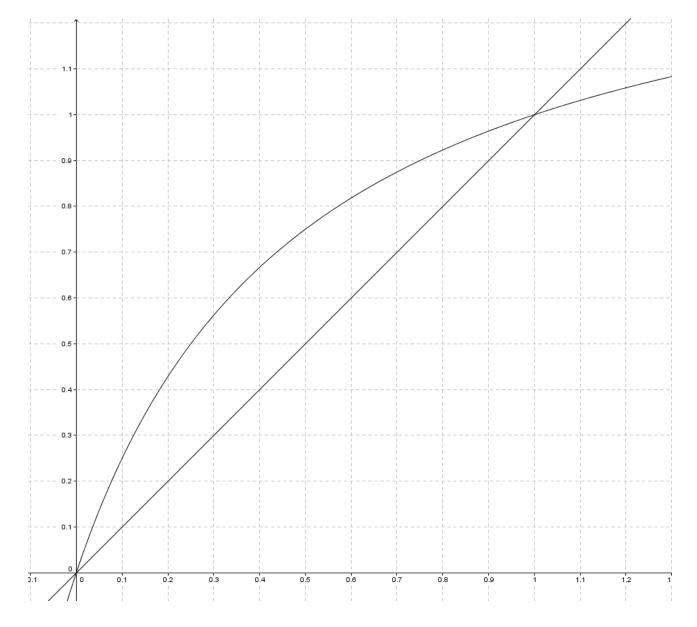
Pour i allant de 1 à n Faire
u prend la valeur \sqrt{3u+1}

FinPour

Afficher u

Fin.
```

- 1. Donner u_0 .
- 2. Donner la relation de récurrence liant u_{n+1} et u_n pour tout entier naturel n.
- 3. En utilisant cet algorithme, conjecturer le sens de variation de la suite (u_n) .
- 4. Démontrer cette conjecture par récurrence.


Exercice 3:

On considère la suite (u_n) définie sur \mathbb{N} par $u_0 = \frac{1}{2}$ et la relation : $u_{n+1} = \frac{3 u_n}{1 + 2 u_n}$

- 1) a) Calculer u_1 , u_2 .
 - **b)** La suite (u_n) est-elle géométrique ? La suite (u_n) est-elle arithmétique ?
- 2) Soit f la fonction définie sur]- $\frac{1}{2}$; + ∞ [par $f(x) = \frac{3x}{1+2x}$.

Placer u_0 , u_1 , u_2 , u_3 , u_4 , sur l'axe des abscisses du graphique joint en annexe, sur lequel est tracé la courbe représentative de f. Aucune justification n'est demandée mais on laissera les traits de construction.

- 3) Etudier les variations de f sur]- $\frac{1}{2}$; + ∞ [.
- 4) Démontrer par récurrence, que pour tout entier naturel n, $0 < u_n < 1$.
- 5) Démontrer que la suite (u_n) est croissante.
- 6) On pose: pour tout n de \mathbb{N} , $v_n = \frac{u_n}{1 u_n}$.
 - a) Montrer que la suite (v_n) est une suite géométrique de raison 3.
 - **b)** Donner une expression de v_n en fonction de n.
 - c) En déduire une expression de u_n en fonction de n.

