

Nombres entiers et rationnels et calcul du PGCD

I. Introduction aux différents ensembles de nombres :

1.L'ensemble des réels :

Définition :

L'ensemble de tous les nombres se nomme l'ensemble des réels.

On le note \mathbb{R} (de l'allemand real)

EXEMPLE:

Les nombres suivants sont des nombres réels :

$$0;1;-3;\sqrt{2};\frac{3}{5};\pi$$

2. L'ensemble des entiers naturels .

Définition:

c'est l'ensemble de tous les entiers positifs ou nul.

On le note \mathbb{N} (de l'italien naturale)

REMARQUE: $\mathbb{N} = 0; 1; 2; 3; 4; \dots$

3.L'ensemble des entiers relatifs.

Définition :

C'est l'ensemble de tous les entiers positifs, négatifs et nul.

On le note \mathbb{Z} (de l'allemand zahlen :compter)

4. L'ensemble des nombres décimaux.

Définition :

C'est l'ensemble des nombres qui peuvent s'écrire avec un nombre fini de décimales.

On le note \mathbb{D} (du français décimale) .

EXEMPLE:

Les nombres suivants sont des nombres décimaux :

$$0; 1; -3, 2; 5, 689; \frac{4}{5}$$

Par contre 0,333333..... n'est pas un nombre décimal puisque sa partie décimale est infinie.

5. L'ensemble des nombres rationnels.

Définition:

C'est l'ensemble des nombres pouvant s'écrire sous la forme d'une fraction d'entiers relatifs.

On le note \mathbb{Q} (de l'italien quotienté) .

EXEMPLE:

Les nombres suivants sont des nombres rationnels :

$$0; 1; -3, 2; 7, 069; \frac{4}{5}$$

6.L'ensemble des nombres irrationnels.

Définition :

C'est l'ensemble des nombres qui ne sont pas rationnels ; que l'on ne peut donc pas écrire sous forme de fraction.

On le note $\mathbb{R}\%5C\mathbb{Q}(l'ensemble des réels privé des rationnels) .$

EXEMPLE:

Les nombres suivants sont des nombres irrationnels :

$$\pi$$
; $\sqrt{2}$; $\sqrt{3}$

II. Etude de l'ensemble des entiers naturels.

Tous les nombres considérés dans ce paragraphe sont des entiers naturels donc appartenant à : $\mathbb{N} = \{0; 1; 2; 3; 4; 5; 6; \ldots\}$

1.Diviseurs et multiples.

Définition:

Le nombre a est divisible par b s'il existe un nombre n tel que : $a = b \times n$.On dit alors que a est multiple de b et de n.

EXEMPLE:

10 = 2x5 donc 10 est divisible par 2 et par 5, et 10 est un multiple de 2 et 5 (il y en a d'autres).

2. Critères de divisibilité. (rappels de sixième).

Propriétés:

- Par 2 : Un nombre est divisible par 2 s'il est pair, c'est-à-dire lorsqu'il se termine par 0, 2, 4, 6 ou 8.
- Par 3 : Un nombre est divisible par 3 si la somme des chiffres qui le composent est divisible par 3.
- Par 5 : Un nombre est divisible par 5 s'il se termine par 0 ou par 5.
- Par 9 : Un nombre est divisible par 9 si la somme des chiffres qui le composent est divisible par 9.

EXEMPLE:

• 675 est divisible par 9 car 6+7+5=18.

et 18 est divisible par 9.

•114 est divisible par 3 car 1+1+4=6 et 6 est divisible par 3.

3. Diviseurs communs.

Définition :

Un diviseur commun de deux nombres a et b est un nombre qui divise à la fois a et b.

EXEMPLE:

3 est un diviseur commun de 114 et 27 car 3 divise 114 (114 = 3x38) et 3 divise 27 (27=3x9).

4.Plus Grand Diviseur Commun.

Définition :

Le PGCD de deux nombres a et b est le plus grand des diviseurs communs de a et de b.

Définition:

Deux nombres sont premiers entre eux lorsque leur PGCD est 1, c'est-à-dire lorsqu'il n'ont comme diviseur commun que le nombre 1.

EXEMPLE:

8 et 27 sont premiers entre eux car ils n'ont comme diviseur commun que 1, leur PGCD est 1.

5. Algorithmes de calcul du PGCD de deux nombres a et b.

Définition:

Un **algorithme** est une succession de règles ou de procédures bien définies qu'il faut suivre pour obtenir la solution d'un problème dans un nombre fini d'étapes.

a. Algorithme des différences.

Cet algorithme repose sur la propriété suivante :

Propriété:

Soit a et b deux entiers avec a > b, alors PGCD(a;b) = PGCD (b;a - b).

EXEMPLE:

Calculons le PGCD de 675 et 375 par l'algorithme des différences. pgcd(675;375)

- = pgcd (Le plus petit; la différence des 2)
- = pgcd(375;675 375)
- = pgcd(375;300)
- = pgcd (300; 375 300)
- = pgcd (300;75)
- = pgcd (75; 300 75)

```
= pgcd (75; 225)
```

$$= pgcd (75; 225 - 75)$$

$$= pgcd (75; 150)$$

$$= pgcd(75;150-75)$$

$$= pgcd (75;75)$$

$$= pgcd(75,75-75)$$

$$= pgcd(75,0)=75$$

Le plus grand diviseur commun à 75 et 0 est 75.

Donc le **pgcd (675 , 375) = 75**.

b. Algorithme d'Euclide.

Division euclidienne (rappels sixième)

Soit a et b deux entiers avec a > b alors il existe un unique couple d'entiers (q,r) tel que a = bq+r (avec r < b)

- a est appelé "le dividende";
- b est appelé "le diviseur";
- q est appelé "le quotient";
- r est appelé "le reste";

EXEMPLE:

Donnons l'égalité de la division euclidienne de 65 par 32.

$$65 = 32 \times 2 + 1.$$

L'algorithme d'Euclide repose sur la propriété suivante :

Propriété:

Soit a et b deux entiers avec a > b et r le reste de la division euclidienne de a par b, alors pgcd (a ;

$$b) = pgcd(b; r)$$

EXEMPLE:

Reprenons le calcul du PGCD de 675 et 375 par l'algorithme d'Euclide

$$675 = 375 \times 1 + 300 \text{ donc pgcd}(675;375) = \text{pgcd}(375;300)$$

$$375 = 300 \times 1 + 75 \text{ donc pgcd}(375;300) = \text{pgcd}(300;75)$$

$$300 = 4x75 + 0 \text{ donc pgcd}(300;75) = \text{pgcd}(75;0) = 75$$

Le dernier reste non nul est 75

Donc le **pgcd (675,375)=75**.

REMARQUE:

Nous observons l'efficacité de l'algorithme d'Euclide (3 étapes) par rapport à l'algorithme des différence (13 étapes).

III.Les fractions:

Définition:

Une fraction est irréductible si, et seulement si, son numérateur et son dénominateur sont premiers entre eux.

Propriété:

Si on simplifie une fraction par le PGCD du numérateur et du dénominateur, alors on obtient une fraction irréductible.

EXEMPLE:

D'après précédemment pgcd(675, 375) = 75.

$$\frac{675}{375} = \frac{675:75}{375:75} = \frac{9}{5}$$

Cette dernière fraction est bien irréductible

car on a simplifié par le pgcd du numérateur et du dénominateur.