

Bac S Nouvelle Calédonie mars 2019

Bac S Nouvelle Calédonie

Mars 2019

MATHÉMATIQUES Série S Enseignement Obligatoire – Coefficient 7 Durée de l'épreuve : 4 heures

Exercice 1 : 5 points
Commun à tous les candidats

Les parties A, B et C peuvent être traitées indépendamment.

Partie A

Une société de location de voitures s'intéresse à l'état mécanique de son parc automobile afin d'anticiper les frais d'entretien.

On dispose des données suivantes :

- 20% des voitures sont sous garantie;
- pour 1% des voitures sous garantie, une réparation est nécessaire;
- pour 10% de celles qui ne sont plus sous garantie, une réparation est nécessaire.

On choisit une voiture au hasard dans le parc et on considère les événements suivants :

- G : « la voiture est sous garantie » ;
- R: « une réparation est nécessaire ».
- 1. a. Traduire la situation par un arbre pondéré.
- b. Calculer la probabilité que la voiture choisie soit sous garantie et nécessite une réparation.
- c. Justifier que P(R) = 0.082.
- d. Il s'avère que la voiture choisie nécessite une réparation.

Quelle est la probabilité qu'elle soit sous garantie? On arrondira le résultat à 10^{-3} .

2. La société de location fait appel à un garage pour l'entretien de son parc automobile. L'entretien consiste en une révision à laquelle s'ajoutent d'éventuelles réparations.

Les conditions commerciales du garage sont les suivantes :

- si la voiture est encore sous garantie, l'entretien est gratuit ;
- si la voiture n'est plus sous garantie, l'entretien est facturé de la manière suivante : la révision coûte 100 € et, si une réparation est nécessaire, il faut rajouter 400 €.

Sachant que son parc automobile compte 2 500 voitures, est-il raisonnable pour la société de location de prévoir un budget annuel de 250 000 euros pour l'entretien de l'ensemble des voitures 2

On pourra introduire la variable aléatoire X qui représente le coût d'entretien d'une voiture.

Partie B

La société de location propose à ses clients deux contrats de location : un contrat de courte durée (inférieure à 2 jours) et un contrat de longue durée (de 3 à 7 jours).

La directrice de cette société affirme que 80% des clients demandent un contrat de courte durée. Sur les 600 derniers contrats signés l'année précédente, 550 étaient des contrats de courte durée.

- 1. En supposant que l'affirmation de la directrice est correcte, déterminer un intervalle de fluctuation asymptotique au seuil de 95% de la fréquence des contrats de courte durée.
- 2. Que peut-on penser de l'affirmation de la directrice?

Partie C

On modélise le nombre de kilomètres parcourus par les clients louant une voiture pour une semaine par une variable aléatoire Y suivant la loi normale d'espérance μ , =, 450 et d'écart-type σ , = 100.

- 1. Quelle est la probabilité que le client louant la voiture pour une semaine roule entre 500 km et 600 km? On arrondira le résultat à 10^{-3} .
- 2. La société de location souhaite faire une offre promotionnelle aux 15% de ses clients parcourant le moins de kilomètres en une semaine.

En-dessous de quel kilométrage hebdomadaire, arrondi à l'unité, un client sera-t-il concerné par cette offre?

Exercice 2: 6 points

Commun à tous les candidats

Partie A: Étude d'une fonction auxiliaire

Soit g la fonction définie sur $\mathbb R$ par :

$$g,(x),=,(x,+2)e^{x-4},-2.$$

- 1. Déterminer la limite de g en $+\infty$.
- 2. Démontrer que la limite de g en $-\infty$ vaut -2.
- 3. On admet que la fonction g est dérivable sur R et on note g^\prime sa dérivée.

Calculer g'(x) pour tout réel x puis dresser le tableau de variations de g .

- 4. Démontrer que l'équation g (x) = 0 admet une unique solution α sur \mathbb{R} .
- 5. En déduire le signe de la fonction g sur \mathbb{R} .
- 6. À l'aide de la calculatrice, donner un encadrement d'amplitude 10^{-3} de α .

Partie B : Étude de la fonction f

Soit f la fonction définie sur $\mathbb R$ par

$$f,(x),=,x^2,-x^2e^{x-4}$$
.

- 1. Résoudre l'équation f(x) = 0 sur \mathbb{R} .
- 2. On admet que la fonction f est dérivable sur $\mathbb R$ et on note f' sa fonction dérivée.

On admet par ailleurs que, pour tout réel x, f,'(x),=,-xg,(x) où la fonction g est celle définie à la partie A.

Étudier les variations de la fonction f sur \mathbb{R} .

3. Démontrer que le maximum de la fonction f sur $[0; +\infty[$ est égal à $\frac{\alpha,^3}{\alpha+2}$.

Partie C : Aire d'un domaine

Dans un repère orthonormé (O, \vec{i}, \vec{j}) , on note D le domaine compris entre la courbe représentative C_f de la fonction f , la parabole P d'équation $y=x^2$ et les droites d'équations $\mathbf{x}=\mathbf{0}$ et $\mathbf{x}=\mathbf{4}$.

- 1. Déterminer la position relative des courbes C_f et P .
- 2. On admet qu'une primitive de la fonction f sur $\mathbb R$ est définie par :

$$F(x) = \frac{x^3}{3} - (x^2 - 2x + 2)e^{x-4}.$$

Calculer l'aire du domaine D en unité d'aire. On donnera la valeur exacte.

Exercice 3:4 points

Commun à tous les candidats

Pour chacune des quatre affirmations suivantes, indiquer si elle est vraie ou fausse et justifier la réponse choisie.

Il est attribué 1 point par réponse exacte correctement justifiée. Une réponse non justifiée ne rapporte aucun point. Une absence de réponse n'est pas pénalisée.

Pour les questions 1 à 3, on se place dans un plan muni du repère orthonormé direct (O, \vec{u}, \vec{v}) .

1. Soit (E) l'équation d'inconnue le nombre complexe z.

$$z(z^2 - 8z + 32) = 0$$

Affirmation 1:

Les points dont les affixes sont les solutions de l'équation (E) sont les sommets d'un triangle d'aire égale à 16 unités d'aire.

2. Soit ξ l'ensemble des points dont les affixes z vérifient :

$$|z|, |z-3|, |z+3|, |z$$

Affirmation 2:

L'ensemble ξ est le cercle de centre O et de rayon 3.

3. On considère la suite de nombres complexes (z_n) définie pour tout entier naturel n par :

$$z_n = (1 - i\sqrt{3})^n$$

Pour tout entier naturel n, on note M_n le point d'affixe z_n .

Affirmation 3:

Pour tout entier naturel n, les points M_n , O et Mn+3 sont alignés.

4. On considère l'équation d'inconnue le nombre réel x.

$$\sin x(2\cos^2 x - 1) = 0.$$

Affirmation 4:

Cette équation admet exactement quatre solutions sur l'intervalle] $-\pi;\pi]$ qui sont :

$$-\frac{\pi}{4}$$
; 0; $\frac{\pi}{4}$ et π .

Exercice 4:5 points

Candidats n'ayant pas suivi l'enseignement de spécialité

On considère la suite (u_n) à valeurs réelles définie par $u_0,=,1$ et, pour tout entier naturel n, $u_{n+1}=\frac{u_n}{u_{n+8}}$

Partie A: Conjectures

Les premières valeurs de la suite (u_n) ont été calculées à l'aide d'un tableur dont voici une capture d'écran :

	A	В
1	n	u_n
2	0	1
3	1	0,111 111 11
4	2	0,013 698 63
5	3	0,001 709 4
6	4	0,000 213 63
7	5	2,6703E-05
8	6	3,3379E-06
9	7	4,1723E-07
10	8	5,215 4E-08
11	9	6,5193E-09
12	10	8,1491E-10

- 1. Quelle formule peut-on entrer dans la cellule B3 et copier vers le bas pour obtenir les valeurs des premiers termes de la suite (u_n) ?
- 2. Quelle conjecture peut-on faire sur les variations de la suite (u_n) ?
- 3. Quelle conjecture peut-on faire sur la limite de la suite (u_n) ?
- 4. Écrire un algorithme calculant u_{30} .

Partie B : Étude générale

- 1. Démontrer par récurrence que, pour tout entier naturel n, $u_n > 0$.
- 2. Étudier les variations de la suite (u_n) .
- 3. La suite (u_n) est-elle convergente? Justifier.

Partie C : Recherche d'une expression du terme général

On définit la suite (v_n) en posant, pour tout entier naturel n,

$$v_n = 1 + \frac{7}{u_n}.$$

- 1. Démontrer que la suite (v_n) est une suite géométrique de raison 8 dont on déterminera le premier terme.
- 2. Justifier que, pour tout entier naturel n, $u_n = \frac{7}{8^{n+1}-1}.$

$$u_n = \frac{7}{8^{n+1} - 1}.$$

- 3. Déterminer la limite de la suite (u_n) .
- 4. On cherche dans cette question le plus petit entier naturel n_0 tel que, pour tout entier naturel n supérieur ou égal à n_0 , $u_n < 10^{-18}$.

Justifier l'existence d'un tel entier n_0 et déterminer sa valeur.

Consulter le corrigé en ligne