Les limites et les asymptotes : cours de maths en terminale en PDF.

webmaster
26 avril 2025

Les limites (somme, produit, quotient) dans un cours de maths en terminale avec l’étude des formes indéterminées.
Dans cette leçon, nous mènerons une études des asymptotes horizontales, verticales et obliques en terminale pour l’enseignement obligatoire.
Connaissances nécessaires à ce chapitre :
\star Déterminer la limite éventuelle d’une suite géométrique.
\star Étudier la limite d’une somme, d’un produit ou d’un quotient
de deux suites.
\star Utiliser un théorème de comparaison ou d’encadrement
pour déterminer une limite de suite.
\star Établir (par dérivation ou non) les variations d’une fonction.

I.Limite d’une fonction en l’infini

Dans toute cette partie, C_f désigne la courbe représentative de la fonction f dans un repère quelconque du plan.

1. Limite finie en l’infini

Définition :
Soit f une fonction définie au moins sur un intervalle de \mathbb{R} du type ]a ; +\infty[.
La fonction f a pour limite ℓ en +\infty si tout intervalle ouvert contenant ℓ contient toutes les
valeurs de f (x) pour x assez grand. On note alors : limites de fonctions.

Exemple :

Soit f la fonction définie sur ]0 ; +\infty[par f (x) =\frac{1}{x}+ 1. On a \lim_{x\rightarrow +\infty}\left ( \frac{1}{x}+1 \right ) = 1.
En effet, l’inverse de x se rapproche de 0 à mesure que x augmente.
Soit un intervalle ouvert I tel que 1\in I. Alors, f (x) sera toujours dans I pour x assez grand.
Graphiquement, aussi étroite que soit une bande parallèle à la droite d’équation y = 1 et qui la
contient, il existe toujours une valeur de x au delà de laquelle C_f ne sort plus de cette bande.

Limite de fonctions

Asymptote horizontale.
La droite d’équation y = ℓ est asymptote horizontale à C_f en +\infty si \lim_{x\rightarrow +\infty}f (x) = l.

Remarque :

On définit de façon analogue \lim_{x\rightarrow -\infty}f (x) = l qui caractérise une asymptote horizontale à C_f en -\infty d’équation y = ℓ.

Exemple :

On a vu précédemment que \lim_{x\rightarrow +\infty}\left ( \frac{1}{x}+1 \right ) = 1. On a aussi \lim_{x\rightarrow -\infty}\left ( \frac{1}{x}+1 \right ) = 1.
Donc, la droite d’équation y = 1 est asymptote horizontale à la courbe C_f en +\infty et en -\infty .

Propriété (admise) : limites finies des fonctions usuelles en ± \infty.
Soit n un entier naturel non nul.
\lim_{x\rightarrow +\infty}\frac{1}{\sqrt{x}}=\lim_{x\rightarrow +\infty}\frac{1}{x^n}=0 et \lim_{x\rightarrow -\infty}\frac{1}{x^n}=0.

II. Limite infinie en l’infini

Définition :
La fonction f a pour limite +\infty en +\infty si tout intervalle de \mathbb{R} du type ]a ; +\infty[ contient
toutes les valeurs de f (x) pour x assez grand. On note alors : \lim_{x\rightarrow +\infty}f (x) = +\infty.

Exemple :

Soit f la fonction racine carrée. On a\lim_{x\rightarrow +\infty} \sqrt{x} = +\infty.
En effet, \sqrt{x} devient aussi grand que l’on veut à mesure que x augmente.
Soit un intervalle ouvert I =]a ; +\infty[. Alors, f (x) sera toujours dans I pour x assez grand.
Graphiquement, si on considère le demi-plan supérieur de frontière une droite d’équation
y = a, il existe toujours une valeur de a au-delà de laquelle C_f ne sort plus de ce demi-plan.

Courbe de fonction racine carrée.

Propriété (admise) : limites infinies des fonctions usuelles en ±\infty.
Soit n un entier naturel non nul.
\lim_{x\rightarrow +\infty}\sqrt{x}=\lim_{x\rightarrow +\infty}x^n=+\infty et \lim_{x\rightarrow -\infty}x^n=0 (+\infty\, si\, n\,pair ; -\infty\,si\, n\,impair ).

2. Limite infinie en un réel

Définition :
Soit f une fonction définie sur un intervalle ouvert de \mathbb{R} du type ]x_0 -\varepsilon ; x_0[ ou ]x_0 ; x_0+\varepsilon[.
La fonction f a pour limite +\infty en x_0 si tout intervalle de \mathbb{R} du type ]A ; +\infty[ contient toutes
les valeurs de f (x) pour x assez proche de x_0. On note alors : \lim_{x\rightarrow x_0}f (x) = +\infty.
Définition : asymptote verticale.
La droite d’équation x=x_0 est asymptote verticale à C_f si \lim_{x\rightarrow x_0}f (x) = +\infty ou \lim_{x\rightarrow x_0}f (x) = -\infty.
Propriété (admise) : limites finies des fonctions usuelles en 0.
Soit n un entier naturel non nul.
\lim_{x\rightarrow 0^+}\frac{1}{\sqrt{x}}=\lim_{x\rightarrow 0^+}\frac{1}{x^n}=+\infty et \lim_{x\rightarrow 0^+}\frac{1}{x^n}=0 (+\infty\, si\, n\,pair ; -\infty\,si\, n\,impair ).

III. Opérations sur les limites.

Propriété : limite d’une somme, d’un produit et d’un quotient de deux fonctions.

limite-somme-produit-quotient

IV. Limite d’une fonction composée

1. Fonction composée

Définition :
Soit f une fonction définie sur E et à valeurs dans F, et soit g une fonction définie sur F.
La composée de f suivie de g est la fonction notée g o f définie sur E par g o f (x) = g( f (x)).

Remarque :

Il ne faut pas confondre g o f et fo g qui sont, en général, différentes.

2. Théorème de composition des limites

Théorème :
Soit h la composée de la fonction f suivie de g et a, b et c trois réels ou ± \infty.
Si \lim_{x\rightarrow a}f (x) = b et \lim_{x\rightarrow b}g (x) = c, alors \lim_{x\rightarrow a}h (x) = c.

V. Limites et comparaison

1. Théorème de comparaison

Théorème :

Théorème de comparaison

2. Théorème d’encadrement dit « des gendarmes » ou « sandwich ».

Théorème :
Soit deux réels a et ℓ et trois fonctions f , g et h telles que, pour x > a, on a f (x) \leq g(x) \leq h(x).
Si \lim_{x\rightarrow +\infty}f (x) =\lim_{x\rightarrow +\infty}h (x) = l, alors \lim_{x\rightarrow +\infty}g (x) =l.

Remarque :

On a, comme pour le théorème de comparaison précédent, deux théorèmes
analogues lorsque x tend vers −\infty et lorsque x tend vers un réel x_0.

Exemple :

Déterminons la limite en −\infty de f (x) = \frac{x cos x }{x^2 + 1}.
La limite de cos x en −\infty est indéterminée. Donc celle de f (x) aussi.
Cependant pour tout x réel strictement négatif, -1 \leq cos x \leq 1 donc x \leq x cos x \leq -x.
Et en divisant membre à membre par x^2 + 1 > 0 on a :
\frac{x}{x^2+1}\leq \frac{x cos x}{x^2+1}\leq \frac{-x}{x^2+1}.

Pour x \in R ^*,\frac{x}{x^2 + 1}=\frac{1}{x+\frac{1}{x}}.

Or,  \lim_{x\rightarrow -\infty}x+\frac{1}{x}=-\infty donc  \lim_{x\rightarrow -\infty}\frac{x}{x^2 + 1}=\lim_{x\rightarrow -\infty}\frac{-x}{x^2 + 1}=0

Donc, d’après le théorème des gendarmes,\lim_{x\rightarrow -\infty}\frac{x cos x }{x^2 + 1}=0.

Matrices et opérations : cours de maths en terminale spécialité en PDF.

Matrices et opérations à travers un cours de maths en terminale spécialité. I. Notion de matrices : Définition : n et p désignent des nombres entiers naturels non nuls. Une matrice de format ( ou taille ) (n,p) est un tableau de nombres réels à n lignes et p colonnes. Exemple : La matrice M ci-dessous […]

Arithmétique : cours de maths en terminale spécialité en PDF.

L’arithmétique dans un cours de maths en terminale spécialité. Ce cours fait intervenir les notions de divisibilité, multiples, diviseurs, congruences, les nombres premiers et la décomposition en facteur premier d’un nombre entier. Egalement la division Euclidienne, le théorème de Bézout et le théorème de Gauss. I. Divisibilité. Définition : Soient a et b deux entiers […]

Les suites numériques : cours de maths en terminale en PDF.

Les suites numériques dans un cours de maths en terminale en enseignement obligatoire. Nous étudierons la définition d’une suite numérique et son comportement. I . Comportement d’une suite numérique : Définition : Une suite est une application de l’ensemble dans l’ensemble . . Définitions : Une suite est croissante . Une suite est décroissante . […]

Notez Mathovore !

Votre avis est précieux pour nous aider à améliorer l'application

share Partager