Exercices maths terminale S et ES

Exercices sur les ensemble de points et sur le barycentre en terminale S

La série des exercices sur le barycentre de n points pondérés.Ces fiches peuvent être téléchargées en PDF afin d’être imprimées librement pour les élèves et enseignants de terminale S.

Ensemble de points

0. Dans un repère orthonormé (O,\vec{i},\vec{j}) du plan,

    placer les points A(– 2 ; 0), B(4 ; 0), C(2 ; 4) et D(0 ; 4).
1. Démontrer que ABCD est un trapèze isocèle.
2. Déterminer les réels \alpha et \beta tels que O soit le barycentre de (A ; \alpha) (B ; 1) (C ; 1) (D ; \beta) .
3. Soit I le milieu de [BC] et G le point tel que \vec{AG}=-\frac{1}{2}\vec{AD} .
a. Déterminer des réels a et b tels que G soit le barycentre de (A ; a) (D ; b).
b. Démontrer que G, O et I sont alignés. Préciser la position de O sur [GI].
4.
a. Déterminer et construire l’ensemble E_1 des points M du plan tels que
\,\|\,\vec{MB}+\vec{MC}\,\,\|=\,\|\,3\vec{MA}-\vec{MD}\,\,\| .
b. Justifier que O appartient à E_1 .
5.
a. Déterminer et construire l’ensemble E_2 Des points M du plan tels que :
\,\|\,3\vec{MA}+\vec{MB}+\vec{MC}-\vec{MD}\,\,\|=16
b. Justifier que B et D appartiennent à E_2.

Corrigé de cet exercice

Carré et parallélogramme
ABC est un triangle de sens direct.

DBA est un triangle isocèle et rectangle en D de sens direct.

ACE est un triangle isocèle et rectangle en E de sens direct.

On construit le point L tel que \vec{CL}=\vec{DB}.

1. Faire une figure.

2. Démontrer que EDL est un triangle rectangle isocèle en E de sens direct. .

Corrigé de cet exercice

Extrait du baccalauréat S  sur le barycentre

On considere un triangle ABC du plan .
1.a. Déterminer et construire le point G, barycentre du système de points pondérés :

 \{(A;1)\,;\,(B;-1)\,;\,(C;1)\} .

b. Déterminer et construire le point G’, barycentre du système de points pondérés :

 \{(A;1)\,;\,(B;5)\,;\,(C;-2)\} .

2.a. Soit J le milieu de [AB].

Exprimer \vec{GG'} et \vec{JG'} en fonction de \vec{AB} et \vec{AC} et en déduire l’intersection des droites (GG’) et (AB) .

b. Montrer que le barycentre I du système de points pondérés :

 \{(B;2)\,;\,(C;-1)} appartient à (GG’) .

3. Soit D un point quelconque du plan et O le milieu de [CD] et K le milieu de [OA] .

a. Déterminer trois réels a, b, c tels que K soit le barycentre du système de points pondérés :

 \{(A;a)\,;\,(B;b)\,;\,(C;c)\} .

b. Soit X le point d’intersection de (DK) et (AC).

Déterminer les réels a’ et c’ tels que X soit barycentre du système de points pondérés :

 \{(A;a')\,;\,(C;c')\} .

Corrigé de cet exercice


Télécharger et imprimer ce document en PDF gratuitement

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «exercices sur les ensemble de points et sur le barycentre en terminale S» au format PDF.



Des cours et exercices expliqués en vidéos



Rejoignez-nous sur notre chaîne YouTube

Concours : gagnez une PS4 ou un Ipad Pro

Nouveau concours avec une console Playstation 4 (PS4 ) ou une tableatte Ipad Pro à gagner.
Le tirage au sort sera effectué avec un logiciel de manière aléatoire chaque début de mois et les résultats seront annoncés sur notre page facebook.
Les gagnants seront tirés au sort parmi les 1 000 premiers abonnés de notre nouvelle chaîne Youtube.


je participe au tirage au sort en m'abonnant à la chaîne YouTube Je participe au tirage au sort en m'abonnant à la chaîne YouTube.

Inscription gratuite à Mathovore.  Mathovore c'est 1 549 605 cours et exercices de maths téléchargés en PDF et 147 083 membres.
Rejoignez-nous : inscription gratuite.

Mathovore

GRATUIT
VOIR