Produit scalaire : exercices de maths en 1ère corrigés en PDF.

webmaster
29 mars 2025

Le produit scalaire dans le plan avec des exercices de maths en 1ère en ligne pour progresser au lycée. Savoir appliquer les propriétés du produit scalaire et démontrer que des vecteurs sont orthogonaux ou colinéaires. Utiliser la relation de Chasles sur les vecteurs.

Exercice n° 1:
Soient  \vec{AB} et  \vec{AC} deux vecteurs et k\in\mathbb{Z} .
Calculer  \vec{AB}.\vec{AC} dans les conditions suivantes :
a. AB=3 , AC=5 et (\vec{AB}.\vec{AC})=-\frac{\pi}{6}+2k\pi .
b. AB=1 , AC=4 et (\vec{AB}.\vec{AC})=-\frac{8\pi}{3}+2k\pi .
c. AB=4 , AC=7 et (\vec{AB}.\vec{AC})=-\frac{\pi}{4}+2k\pi .
d. AB=2 , AC=2 et (\vec{AB}.\vec{AC})=-\frac{5\pi}{3}+2k\pi .

Exercice n° 2 :
Calculer \vec{AC}.\vec{AB}\,;\,\vec{CA}.\vec{BA}\,;\,\vec{BA}.\vec{AC}\,\,; sachant que :
a. \vec{AB}.\vec{AC}=-3
b. \vec{AB}.\vec{AC}=2

Exercice n° 3 :
MNPQ est un losange de centre O tel que MP=8 et NQ=6.
Calculer les produits scalaires suivants :
a. \vec{MO}.\vec{MN}\,;\,\vec{PQ}.\vec{NQ}\,;\,\vec{PM}.\vec{NP}\,\,; .
b. \vec{MQ}.\vec{NP}\,;\,\vec{MN}.\vec{PQ}\,;\,\vec{OM}.\vec{NM}\,\,;

Exercice n° 4 :
Soit ABCD un carré et I un point de [AB].
On note H le projeté orthogonal de A sur [ID].
En exprimant de deux manières différentes  \vec{IA}.\vec{ID}, démontrer que :
\vec{IA}.\vec{ID}=AI^2

Exercice n° 5  :
Soit ABC un triangle équilatéral de côté 1.
Soit H le projeté orthogonal de A sur (BC).
Calculer \vec{BA}.\vec{AC} et \vec{AB}.\vec{AH} en utilisant les projections orthogonales .

Exercice 6 – Produit scalaire dans un carré

Soit un carré ABCD. On construit un rectangle APQR tel que :

 – P et R sont sur les côtés [AB] et [AD] du carré ;
–  AP = DR.

Le problème a pour objet de montrer que les droites (CQ) et (PR) sont perpendiculaires.1. Justifier que : \vec{CQ}.\vec{PR}=\vec{CQ}.(\vec{AR}-\vec{AP}) .2. En déduire que les droites (CQ) et (PR) sont perpendiculaires. Produit scalaire

Exercice 7 – Propriétés algébriques
On a  \| \vec{u} \right \|=2 et \| \vec{v} \right \|=3  et  \vec{u . \vec{v} = -1.
1) Calculez (\vec{u}+\vec{v})^2  et \| (\vec{u} -\vec{v})^2\right \|.
2) Calculer (\vec{u} + \vec{v}) . (2\vec{u}-3\vec{v}).

Exercice 8 – Produit scalaire et point quelconque
Soit A et B deux points distincts du plan et I le milieu du segment [AB].
Démontrer que quelque soit le point M du plan, on a l’égalité :

MA^2-MB^2=(\vec{MA}+\vec{MB}).\vec{BA}=2\vec{MI}.\vec{BA}.
Exercice 9 – Les vecteurs dans le plan
Soit le parallélogramme ABCD tel que :
E est le milieu de [AD]
\vec{AF}=\frac{2}{3}\vec{AB}
K est le dernier sommet du parallélogramme EAFK
M le milieu de [BE]
\vec{AG}=\frac{1}{3}\vec{AB}
\vec{GB}=2\vec{GF}
\vec{GC}=2\vec{GK}
Montrer que vecteur \vec{GK}=2\vec{GM} .

<Exercice 10 – Projeté orthogonal
ABC est un triangle rectangle en A .
H est le projeté orthogonal de A sur (BC) .
I et J sont les milieux respectifs de [AB] et [AC] .
Projeté orthogonal
Démontrer que (HI) et (HJ) sont perpendiculaires .

Exercice 11 – Calculs de produits scalaires dans un parallélogramme

ABCD est un parallélogramme avec AB = 4, AD = 5 et AC = 7.

1.Calculer\vec{AB}.\vec{AD} .

2. En déduire BD.

Exercice 12 – Calculs de produits scalaires dans un carrés

MNPQ est un carré avec MN = 6. I est le centre du carré.y

Calculer les produits scalaires suivants :

1.    \vec{MN}.\vec{QP}

2.    \vec{MN}.\vec{PN}

3.  \vec{IN}.\vec{IP}

4.  \vec{QI}.\vec{NI}

Carré et produit scalaire

Exercice 13 – Déterminer si le triangle est rectangle

ABC est un triangle dans lequel AB = 2 et AC = 3.

De plus \vec{AB}.\vec{AC}=4

Ce triangle est-il rectangle ? Si oui, préciser en quel sommet.

Triangle

Exercice 14 – Triangle équilatéral
ABC est un triangle équilatéral de côté 5 cm. I est le milieu de [BC].

Calculer les produits scalaires suivants :

1. \vec{BA}.\vec{BC} .

2. \vec{CA}.\vec{CI}

3. (\vec{AB}-\vec{AC}).\vec{AI}

Triangle
Exercice 15 – Coordonnées du barycentre

Dans un repère orthonormé (O;\vec{i},\vec{j})
on considère les points suivants : A (2 ; 1), B (7 ; 2) et C (3 ; 4).

Toutes les questions suivantes sont indépendantes et sans rapport.

1. Calculer les coordonnées du barycentre G de (A ; 3), (B ; 2) et (C ; – 4).

2.  Déterminer une équation cartésienne de la médiatrice de [BC].

3. Calculer \vec{CB}.\vec{CA} .

4.  L’angle \widehat{C}  est-il droit ?

Triangle et repère cartésien

Exercice 16 – Cosinus
Soit ABC un triangle.
Calculer \vec{AB}.\vec{AC}  et BC dans chacun des cas suivants :
1. AB= 6cm ; AC= 5 cm et \widehat{BAC}=60^{\circ} .
2. AB= 7 cm ; AC=4cm et \widehat{BAC}=120^{\circ} .

Exercice 17 – Vecteurs orthogonaux
\vec{u} et \vec{v}  sont deux vecteurs de même norme .
Démontrer que les vecteurs \vec{u}+\vec{v} et \vec{u}-\vec{v} sont orthogonaux .

Exercice 18 – Triangle équilatéral
ABC est un triangle équilatéral de côté a .
H est le projeté orthogonal de A sur (BC) et O le centre du cercle circonscrit à ABC.
Exprimer en fonction de a, les produits scalaires suivants :
\vec{AB}.\vec{AC}\,;\,\vec{AC}.\vec{CB}\,;\,\vec{AB}.\vec{AH}\,;\,\vec{AH}.\vec{BC}\,;\,\vec{OA}.\vec{OB}\, .

Exercice 19 – Calculs avec produits scalaires
Sachant que les vecteurs \vec{u} et  \vec{v} sont tels que  \| \vec{u} \right \|=3 , \| \vec{v} \right \|=7 et \vec{u}.\vec{v} =13.
Calculer les produits scalaires suivants :
1. \vec{u}.\left (\vec{u}+3\vec{v} \right ).
2. (\vec{u}-2\vec{v} \right ) ^2.

Exercice 20 – Condition sur des points

A quelle condition sur les points A, B et C a-t-on :

(\vec{AB}+\vec{AB})^2=(AB+AC)^2

Exercice 21 – Déterminer un ensemble de points du plan

On considère un segment [AB] tel que AB = 1 dm.

Déterminer l’ensemble des points M du plan tels que :

1.  \vec{MA}.\vec{MB}=1

2. MA^2+MB^2=5

Déterminer un ensemble de points du plan

Exercice 22 – Trouver un ensemble de points
[AB] est un segment de milieu I et AB = 2 cm.
1. Montrer que pour tout point M du plan :
MA^2-MB^2=2\vec{IM}.\vec{AB}
2. Trouver et représenter l’ensemble des points M du plan tels que : MA^2 -MB^2 = 14

Exercice 23 – Les égalités vectorielles du parallélogramme
Démontrer que :
1.    \| \vec{u}+\vec{v} \right \|^2-\left \| \vec{u}-\vec{v} \right \|^2=4\vec{u}.\vec{v} .
2.  \| \vec{u}+\vec{v} \right \|^2+\left \| \vec{u}-\vec{v} \right \|^2=2(\left \|\vec{u} \right \|^2+\left \| \vec{v} \right \|^2) .
3. Quel est le lien avec le losange, le parallélogramme ?
4. Démontrer que :
(\vec{u}+\vec{v}).(\vec{u}-\vec{v})=\left \| \vec{u} \right \|^2-\left \| \vec{v} \right \|^2
5. En déduire qu’un parallélogramme a ses diagonales perpendiculaires si et seulement si ses côtés sont égaux.

Exercice 24 – Equation d’un cercle et de la tangente

Dans un repère orthonormé(O;\vec{i},\vec{j}) , on donne un point  .

1.  Déterminer l’équation du cercle (C) de centre \Omega et de rayon R = 5.

2.  Démontrer que le point A( – 2 ; 0) est un point du cercle (C).

3.  Déterminer une équation cartésienne de la tangente en A au cercle (C).

Equation d'un cercle et de la tangente

 

Exercice 25 – Médiatrice et hauteur d’un triangle
MNPQ est un carré avec MN = 6. I est le centre du carré.

Calculer les produits scalaires suivants :

1.    \vec{MN}.\vec{QP}

2.    \vec{MN}.\vec{PN}

3.  \vec{IN}.\vec{IP}

4.  \vec{QI}.\vec{NI}

Médiatrice et hauteur d'un triangle

Exercice 26 – Distance d’un point à un cercle
On se place dans un repère orthonormé (O;\vec{i},\vec{j}) .
1. Déterminer l’équation du cercle de centre \Omega (5;1)  tangent à la droite (D) d’équation :
x + y - 4 = 0

Indication :

on rappelle que la distance entre un point A(\alpha ;\beta ) et une droite (D) d’équation ax + by + c = 0 est
donnée par la formule :

d(A,D)=\frac{\left | a\alpha +b\beta +c \right |}{\sqrt{a^2+b^2}}

Distance d'un point à un cercle

Exercice 27 – Produit scalaire et cercle
On se place dans un repère orthonormé (O;\vec{i},\vec{j}).

Examiner si les équations suivantes sont des équations de cercle et, le cas échéant, préciser le centre et le rayon du cercle.

1.  x^2 + y^2 - 2x - 6y + 5 = 0

2.  x^2 + y^2 - x - 3y + 3 = 0

Produit scalaire et cercle

Exercice 28 – Produit scalaire dans un triangle

ABC est un triangle et I est le milieu de [BC].
On donne : BC = 4, AI = 3 et (\vec{IA},\vec{IB})=\frac{\pi}{3} .

Calculer :

1.    \vec{AB}.\vec{AC}

2.   AB^2+AC^2

3.  AB^2-AC^2

4.  AB\,et\,AC

Produit scalaire dans un triangle

Trigonométrie : exercices de maths en 1ère corrigés en PDF.

Des exercices de maths en 1ère corrigés sur les relations métriques dans le triangle quelconque. Exercice 1 – Des équations trigonométriques Résoudre dans  les équations suivantes. 1.   2.  Exercice 2 – Déterminer la valeur de cosinus Dans cet exercice, on donne : Calculer la valeur exacte de  puis de  Exercice 3 – Exercice sur la tangente […]

Angles orientés et repérage polaire : exercices en 1ère corrigés | Première.

Exercice en classe de 1ère sur les angles orientés, le repérage et les coordonnées polaires. Exercice : Exprimer en fonction de sin x et cos x les réels suivants :    

Les suites : exercices de maths en 1ère corrigés en PDF.

Les suites numériques avec des exercices de maths en 1ère en ligne pour progresser au lycée. L’élève devra être capable d’étudier le sens de variation et la limite d’une suite mais également, calculer l’avaleur d’un terme n et la somme de ses n premiers termes. Il devra aussi maîtriser les suites arithmétiques et géométriques en […]

Notez Mathovore !

Votre avis est précieux pour nous aider à améliorer l'application

share Partager