Trigonometry : corrected 1st grade math exercises in PDF.

corrected by Report an error on this Mathovore page.Report an error / Note?
Answers to math exercises in 1st grade on trigonometry.

Exercise 1:

Solve in %5D-\pi;\pi%5D the following equations.

1. cosx=\frac{\sqrt{2}}{2}.

S=\,\{-\frac{\pi}{4};\frac{\pi}{4}\,\,\}

2. sinx=-\frac{\sqrt{3}}{2}.

S=\,\{-\frac{\pi}{6};-\frac{5\pi}{6}\,\,\}

Exercise 2:

In this exercise, we give:

cos(\frac{\pi}{5})=\frac{1+\sqrt{5}}{4}.

Calculate the exact value of cos(\frac{2\pi}{5}) and then of cos(\frac{3\pi}{5}).

cos2X=cos^2X-1

so

cos\,\,\frac{2\pi}{5}=\,cos^2\frac{\pi}{5}-1

cos\,\,\frac{2\pi}{5}=\,\,(\,\frac{1+\sqrt{5}}{4}\,\,)^2-1

cos\,\,\frac{2\pi}{5}=\,\frac{1+2\sqrt{5}+5}{16}\,-1

cos\,\,\frac{2\pi}{5}=\,\frac{1+2\sqrt{5}+5-16}{16}

cos\,\,\frac{2\pi}{5}=\,\frac{2\sqrt{5}-10}{16}

{\color{DarkRed}\,cos\,\,\frac{2\pi}{5}=\,\frac{\sqrt{5}-5}{8}\,}

Hint: for cos\,\,\frac{3\pi}{5}, use the addition formula cos(x+y) with x=\frac{\pi}{5} and y=\frac{2\pi}{5}.

Exercise 3:

In this exercise, we have the following data: tan(\frac{\pi}{12})=2-\sqrt{3}.

1. Let x\in%5D0;\frac{\pi}{2}%5B. Prove that tan(\frac{\pi}{2}-x)=\frac{1}{tanx}.

tan(\frac{\pi}{2}-x)=\frac{sin(\frac{\pi}{2}-x)}{cos(\frac{\pi}{2}-x)}=\frac{cosx}{sinx}=\frac{1}{tanx}

2. Deduce that :

tan(\frac{5\pi}{12})=2+\sqrt{3}.

Use the equality of 1. by taking x=\frac{\pi}{12}

tan(\frac{\pi}{2}-\frac{\pi}{12})=\frac{1}{tan\frac{\pi}{12}}

so tan(\frac{6\pi}{12}-\frac{\pi}{12})=\frac{1}{tan\frac{\pi}{12}}

tan(\frac{5\pi}{12})=\frac{1}{tan\frac{\pi}{12}}

and using the data from the statement :

tan(\frac{5\pi}{12})=\frac{1}{2-\sqrt{3}}

Let’s multiply by the conjugate quantity and use the remarkable identity (a-b)(a+b)=a^2-b^2.

tan(\frac{5\pi}{12})=\frac{2+\sqrt{3}}{(2-\sqrt{3})(2+\sqrt{3})}

tan(\frac{5\pi}{12})=\frac{2+\sqrt{3}}{2^2-(\sqrt{3})^2}

tan(\frac{5\pi}{12})=\frac{2+\sqrt{3}}{4-3}

tan(\frac{5\pi}{12})=\frac{2+\sqrt{3}}{1}

Conclusion: tan(\frac{5\pi}{12})=2+\sqrt{3}.

Exercise 4:

Solve in%5D-\pi;\pi%5D the equation: sin(2x) = cos(x).

2sinxcosx=cosx

2sinxcosx-cosx=0

cosx(2sinx-1)=0

It’s a product equation.

A product of factors is zero if and only if at least one of the factors is zero.

cosx=0 or 2sinx-1=0

cosx=0\,ou\,sinx=\frac{1}{2}

S=\,\,\{\,-\frac{\pi}{2};\frac{\pi}{2};\frac{\pi}{6};\frac{5\pi}{6}\,\}

Exercise 5:

Solve in%5D-\pi;\pi%5B the following equations:

Hint: make changes of variable and use trigonometric formulas.

For the 1, put X=cosx.

1.2cos^3x-7cos^2x+2cosx+3=0.\\2.2sin^3x+cos^2x5sinx-3=0.

Exercise 6:

Solve in\mathbb{R} the equation :

2sin^3x-17sin^2x+7sinx+8=0.

Let’s put X=sinx

We have to solve :

2X^3-17X^2+7X+8=0

An obvious root is X = 1.

2X^3-17X^2+7X+8=(X-1)(aX^2+bX+c)

a = 2

-c=8 so c= -8

c-b=7 so -8-b=7 so b=-8-7=-15

So

2X^3-17X^2+7X+8=(X-1)(2X^2-15X-8)

Let’s calculate the value of the discriminant :

\Delta\,=(-15)^2+4\times  \,2\times  \,8=289

The discriminant is positive, there are two distinct real roots.

X_1=\frac{15+17}{4}=8\,,\,X_2=\frac{15-17}{4}=-\frac{1}{2}

so

2X^3-17X^2+7X+8=(X-1)(X-8)(x+\frac{1}{2})

so we get :

sinx=-1\,ou\,sinx=8\,ou\,sinx=-\frac{1}{2}

or -1\leq\,\,sinx\,\leq\,\,1

so either

sinx=-1\,ou\,\,sinx=-\frac{1}{2}

Conclusion:
x=-\frac{\pi}{2}+2k\pi\,ou\,\,x=-\frac{\pi}{6}+2k\pi\,ou\,\,x=-\frac{5\pi}{6}+2k\pi

Exercise 7:

Trigonometry

Trigonometry

Exercise 8:

Trigonometric circle

Exercise 9:

Trigonometry

Exercise 10:

ABC is a triangle with BC=4,\widehat{B}=\frac{\pi}{4};\widehat{C}=\frac{\pi}{3}.

1. Prove that sin\,\,\,\widehat{A}=\frac{\sqrt{6}+\sqrt{2}}{4}.

2. Calculate the exact values of AB and AC .

Indications:

Use the Al-Kashi formulas and the generalized Pythagorean theorem.

Exercise 11:

Show that the graphical representation of the functionf defined on \mathbb{R} by :

f(x)=cos(2x)+sinx-1

is located between the lines of equation y = – 3 and y = 1 .

All this comes from the fact that -1\leq\,\,sinx\leq\,\,1 and -1\leq\,\,cosx\leq\,\,1.

Just add up each member.

curve

Exercise 12:

Show that, for any real x:

cos^4x-sin^4x=cos(2x).

cos^4x-sin^4x=(cos^2x)^2-(sin^2x)^2

Let’s use the remarkable identity A^2-B^2=(A-B)(A+B)

cos^4x-sin^4x=(cos^2x)^2-(sin^2x)^2=(cos^2x-sin^2x)(cos^2x+sin^2x)

cos^4x-sin^4x=cos(2x)\times  \,1 because cos^2x+sin^2x=1 and cos^2x-sin^2x=cos(2x)

Conclusion: {\color{Blue}\,cos^4x-sin^4x=cos(2x).}

Exercise 13:

Using the addition formulas, calculate the exact value of sin(\frac{7\pi}{12})\,et\,cos(\frac{7\pi}{12}).

sin(\frac{7\pi}{12})=sin(\frac{\pi}{2}+\frac{\pi}{12})=cos(\frac{\pi}{12})

cos(\frac{7\pi}{12})=cos(\frac{\pi}{2}+\frac{\pi}{12})=-sin(\frac{\pi}{12})

Exercise 14:

Let ABC be any triangle.

In the triangles AEB and BEC rectangles in E ,

by applying the Pythagorean theorem :

\,\{\,h^2=c^2-x^2\\h^2=a^2-(b-x)^2\,.

so by equality, we deduce that :

c^2-x^2=a^2-(b-x)^2

c^2-x^2=a^2-(b^2-2bx+x^2)

c^2-x^2=a^2-b^2+2bx-x^2

c^2=a^2-b^2+2bx-x^2+x^2

c^2=a^2-b^2+2bx (*)

In the triangle AEB right-angled at E, using right-angled trigonometry:

cos(\alpha\,)=\frac{x}{c}

so

x=c\times  \,cos(\alpha\,)

Let’s take the equality ( *)

{\color{DarkRed}\,c^2=a^2-b^2+2bc\times  \,cos(\alpha\,)}

Remark: these are the same demonstrations for the other formulas of Al-Kashi,

which are also called generalized Pythagorean formulas.

Triangle

Exercise 15:

\frac{sin3x}{sinx}+\frac{cos3x}{cox}=\frac{sin3x\times  \,cosx}{sinx\times  \,cosx}+\frac{cos3x\times  \,sinx}{cox\times  \,sinx}

=\frac{sin3x\times  \,cosx+cos3x\times  \,sinx}{sinx\times  \,cosx}

=\frac{sin(3x+x)}{sinx\times  \,cosx}

=\frac{sin(4x)}{\frac{sin(2x)}{2}}

=2\frac{sin(4x)}{sin(2x)}

=2\frac{2sin(2x)cos(2x))}{sin(2x)}

{\color{DarkRed}=4cos(2x)}

Exercise 16:

Exercise 17:

Trigonometry
Trigonometry

Exercise 18:
triangle

Exercise 19:
triangle

Answers to the exercises on trigonometry in 1st grade.

After having consulted the answers to these exercises on trigonometry in 1ère, you can return to the exercises in première.

The exercises in the first year.

Cette publication est également disponible en : Français (French) Español (Spanish) العربية (Arabic)


Download and print this document in PDF for free

You have the possibility to download then print this document for free «trigonometry : corrected 1st grade math exercises in PDF.» in PDF format.



Other documents in the category corrected by


Download our free apps with all corrected lessons and exercises.

Application Mathovore sur Google Play Store.    Application Mathovore sur Apple Store.     Suivez-nous sur YouTube.

Other forms similar to trigonometry : corrected 1st grade math exercises in PDF..


  • 96
    Fractions and Calculations: 4th grade math worksheet PDF.The answer key to the 4th grade math exercises on fractions. Know how to calculate with addition, subtraction, multiplication, division and solve problems involving fractions. Exercise 1: Exercise 2: Exercise 3: Exercise 4: Exercise 5: Exercise 6:   Exercise 7: Exercise 8: 1) What fraction of the money did he…
  • 95
    Theorem of Thales: answer key for math exercises in 3rd grade in PDF.Theorem of Thales and correction of the exercises in 3ème with the calculation of length and use of the cross product. Apply the direct and reciprocal part of Thales' theorem. Exercise 1: figure 1: figure 2: Figure 3:   Exercise 2: Show using the direct part of Thales' theorem that…
  • 93
    Limits of functions: answer key to 1st grade math exercises in PDF.The answer key to the exercises on limits in 1st grade. Know how to calculate limits and lift indeterminate forms in first grade. Exercise 1: Determine in each case . 1.   There is no indeterminate form. In , the numerator is increased by 2 and decreased by 0 and…


Les dernières fiches mises à jour.

Voici les dernières ressources similaires à trigonometry : corrected 1st grade math exercises in PDF. mis à jour sur Mathovore (des cours, exercices, des contrôles et autres), rédigées par notre équipe d'enseignants.

  1. Abonnements
  2. Maths : cours et exercices corrigés à télécharger en PDF.
  3. Subscriptions
  4. Suscripciones
  5. الاشتراكات

Free registration at Mathovore.  On Mathovore, there is 13 703 249 math lessons and exercises downloaded in PDF.

Mathovore

FREE
VIEW