Probabilités : corrigé des exercices de maths en terminale en PDF.

webmaster
17 septembre 2025

🔍Corrigés Détaillés
Terminale • Lycée
Probabilités
🔎 Analyse : 15 min
🎯 Niveau : Lycée
📱 Format : Gratuit
📄 PDF : Disponible
Le corrigé des exercices de maths en terminale sur les probabilités.

Exercice 2 :

Probabilités

Exercice 3 :

Probabilités

Exercice 17 :

Arbre de probabilités

1.

2. a. P(E) = 0,2, P_E(C) = 0

b. P(E\,\cap\,\,C) = P(C|E) \times P(E) = 0 \times 0,2 = 0.

On en déduit que la probabilité d’avoir un texte connu et en espagnol est nulle.

Exercice 18 :

1.

2. P (la question porte sur la musique et Robin ne répond pas correctement) = P(B) \times (1 – P(Répond correctement si la question porte sur la musique)) = \frac{2}{3} \times (1 - \frac{3}{4}) = \frac{1 }{6}.

Exercice 19 :

Arbre de probabilité

1.

2. P(\overline{E})= 0,35, P_{ E }(\overline{F}) = 0,48 et P_{ \overline{E} }(\overline{F})= 0,64.

3. La probabilité d’avoir E et F en même temps est égale à P(F|E) \times P(E) = 0,52 \times 0,65 = 0,338.

4. P(E \cap \overline{F}) = P(E) - P(E \cap F) = 0,65 - 0,338 = 0,312 ; P(\overline{E }\cap F) = P(F) - P(E \cap F) = 0,48 - 0,338 = 0,142 ; P(\overline{E} \cap \overline{F}) = 1 - P(E \cup F) = 1 - (P(E) + P(F) - P(E \cap F)) = 0,578.

Exercice 20 :

1. a. P(B) = \frac{P(A \cap B) }{P(A)} = \frac{0,21 }{0,56} = \frac{15}{56}.

b. P(B) = \frac{P(A \cap B) }{P(A)} = \frac{\frac{3}{25} }{ \frac{1}{3}} =\frac{ 9/25}{}.

Exercice 21 :

1. P(T) = 0,84, P(O) = 0,75, P(T \cap O) = 0,6.

Donc, P(\overline{T}) = 0,16 et P(\overline{O}) = 0,25.

2.

| | T | \overline{T} | Total |
|——–|————|—————-|———|
| O | 0,6 | 0,15 | 0,75 |
| \overline{O} | 0,24 | 0,01 | 0,25 |
| Total | 0,84 | 0,16 | 1 |

3. P_T(\overline{O}) = \frac{P(T \cap \overline{O}) }{P(T)} = \frac{0,24 }{0,84} = 0,2857 (arrondi à 4 décimales).

4. P(T|O) =\frac{ P(T \cap O) }{ P(O)} = \frac{0,6 }{0,75} = 0,8.

Exercice 22 :

Arbre de probabilité

1. P(V) = 0,2, P_V(D) = 0,96 et P_{\overline{V}}(D) = 0,05.

2.

3. P(V \cap D) = P_V(D) \times P(V) = 0,96 \times 0,2 = 0,192.

Cette probabilité représente la proportion d’ordinateurs infectés par un virus pour lesquels le logiciel antivirus détecte la présence d’un virus.

Exercice 23 :

Arbre de probabilité

1. P(A) = \frac{600}{600 + 900} = 0,4, P(B) =\frac{ 900 }{600 + 900} = 0,6, P_A (D) = 0,014 et P_B (D) = 0,024.

2.

 

3. a. P(A \cap \overline{D}) = P(A) - P_A(D) = 0,4 - 0,014 = 0,386 et P(B \cap \overline{D}) = P(B) - P_B(D) = 0,6 - 0,024 = 0,576.

Ces probabilités représentent la proportion de composants non défectueux produits par chaque unité.

b. P(D) = P(A) \times P_A(D) + P(B) \times P_B(D) = 0,4 \times 0,014 + 0,6 \times 0,024 = 0,0196.

4. P_A(D) = P(D|A) \times P(A) / P(D) = 0,014 \times 0,4 / 0,0196 \approx 0,2865 (arrondi à 4 décimales).

Exercice 24 :

Panneaux du code de la route

1. P(A et B) = P(A) * P(B) = 0,8 * 0,75 = 0,6.

2. P (\overline{A} \cap \overline{B}) = P(\overline{A}) \times P(\overline{B}) = 0,2 \times 0,25 = 0,05.

Cette probabilité correspond à la proportion de fois où ni le père ni la mère ne répondent à l’appel d’Agathe.

Exercice 25 :

1. a. P(A \cap B) = 0 car A et B sont incompatibles.

Donc, P(A \cup B) = P(A) + P(B) = \frac{1}{4} + a.

En résolvant cette équation, on trouve que a = \frac{1}{6}.

b. P(A \cap B) = P(A) * P(B) car A et B sont indépendants.

Donc,

P(A \cup B) = P(A) + P(B) - P(A \cap B) = 1/4 + a - (1/4 \times a) = 1/4 + a/4.

En résolvant cette équation, on trouve que a = 1/3.

c. Si A est une partie de B, alors P(A) est inférieur ou égal à P(B).

On sait que P(A \cup B) = P(B), donc P(A) + P(B) - P(A \cap B) = P(B), c’est-à-dire P(A \cap B) = P(A). Donc, P(A) = \frac{1}{4} et P(B) = 1/3.

2. P_A (B) = \frac{P(A \cap B) }{P(A)} = 0 car A et B sont incompatibles dans le premier cas ;

P_A (B) = P(B) car A et B sont indépendants dans le deuxième cas ;

P_A (B) =\frac{ P(A)}{P(B)} car A est une partie de B dans le troisième cas.

On trouve ainsi P_A (B) = 0, 1/3 et 1/4 respectivement.

P_B (A) = \frac{P(A \cap B)}{P(B)} = 0 car A et B sont incompatibles dans le premier cas ; P_B (A) = P(A) car A et B sont indépendants dans le deuxième cas ; P_B (A) = \frac{P(A \cap B) }{P(A)} car A est une partie de B dans le troisième cas. On trouve ainsi P_B (A) = 0, 1/4 et 1 respectivement.

4.7/5 - (22757 votes)

Barycentre : corrigé des exercices de maths en terminale en PDF.

🔍Corrigés DétaillésTerminale • LycéeBarycentre🔎 Analyse : 19 min🎯 Niveau : Lycée📱 Format : Gratuit📄 PDF : DisponibleLe corrigé des exercices de maths en terminale sur le barycentre. Des problèmes  sur le barycentre de points pondérés. On retrouvera les notions concernant le centre de gravité d’un triangle, la nature d’un ensemble de points, les droites concourantes. […]

Calcul intégral : corrigé des exercices de maths en terminale en PDF.

🔍Corrigés DétaillésTerminale • LycéeCalcul intégral🔎 Analyse : 19 min🎯 Niveau : Lycée📱 Format : Gratuit📄 PDF : DisponibleLe corrigé des exercices de maths en terminale sur le calcul d’une intégrale en utilisant une intégrale intermédiaire, ainsi que la propriété de linéarité (additivité). Exercice 1 : Calculer en cherchant une intégrale intermédiaire de la forme  qui […]

Arithmétique : corrigé des exercices en terminale spécialité en PDF.

🔍Corrigés DétaillésTerminale • LycéeArithmétique🔎 Analyse : 21 min🎯 Niveau : Lycée📱 Format : Gratuit📄 PDF : DisponibleExercice 1 : 1-Posons d = pgcd(a,b) On a si d divise a et d divise b alors d divise b et d divise (a-bq) Réciproquement : si d divise b et d divise (a-bq)  alors d divise ( […]

share Partager