Fonction continue : cours de maths en terminale en PDF.

webmaster
10 mars 2025

La continuité d’une fonction numérique dans un cours de maths en terminale  faisant intervenir le théorème des valeurs intermédiaires. Nous terminerons cette leçon par l’interprétation graphique et les propriétés de la continuité.

Remarque :

Les programmes limitent la continuité à une approche intuitive qui est de considérer qu’une fonction est continue sur un intervalle I si sa courbe représentative sur I peut être tracée entièrement sans lever le crayon.

I. Notion de continuité d’une fonction.

Propriétés : (admise)
  1. Les fonctions usuelles (affines, carré, inverse, racine carrée, valeur absolue) sont continues
    sur tout intervalle inclus dans leur ensemble de définition.
  2. Toute fonction construite algébriquement (par somme, produit, inverse ou composée) à
    partir de fonctions usuelles est continue sur tout intervalle de son ensemble de définition.
  3. On convient qu’une flèche oblique dans un tableau de variation traduit la continuité et la
    stricte monotonie de la fonction sur l’intervalle considéré.
  4. Une fonction dérivable sur un intervalle est continue sur cet intervalle.

Remarque :

attention Attention, la réciproque de cette dernière propriété est fausse.
Par exemple, la fonction valeur absolue x \mapsto \left |x \right | est continue en 0 mais non dérivable en 0.

 

Méthode : interpréter graphiquement la continuité d’une fonction.
Par convention, une fonction est continue là où elle est tracée. S’il n’y a pas continuité en x_0 :

  1.  le symbole bille rouge indique le point de la courbe de coordonnées (x_0 ; f (x_0)) ;
  2.  le symbole bille rose vide indique un point qui n’appartient pas à la courbe mais dont l’ordonnée est égale à la limite à gauche ou à droite en x_0.

Exercice d’application :

Déterminer graphiquement les intervalles sur lesquels f est continue.
1) Soit la fonction partie entière f : x \mapsto \left |x \right |.

continuité de la fonction partie entière

2) Soit la fonction f représentée ci-dessous.

continuité d'une fonction quelconque

II. Théorème des valeurs intermédiaires.

Théorème : cas général.
Soit f une fonction définie sur un intervalle I contenant deux réels a et b tels que a < b.
Si f est continue sur [a ; b], alors pour tout réel k compris entre f (a) et f (b), il existe au moins
un réel c appartenant à [a ; b] tel que f (c) = k.

Remarque :
f prend au moins une fois toute valeur intermédiaire entre f (a) et f (b).
Autrement dit, l’équation f (x) = k a au moins une solution dans [a ; b] et, sur [a ; b], la
courbe représentative de f coupe la droite d’équation y = k en un point au moins.

Exemple :

Soit f la fonction définie sur [0 ; 6] par f (x) =\frac{x^3}{4}-\frac{9}{4}x^2 + 6x - 3.

Théorème des valeurs intermédiares

On dresse le tableau de variation de f . f admet pour minimum −3 et pour maximum 6.
f est continue sur [0 ; 6].

tableau de variation

Donc, d’après le théorème des valeurs intermédiaires, f prend toutes les valeurs de [−3 ; 6]. En particulier, l’équation f (x) = 0 a au moins une solution dans [0 ; 6].

Théorème : cas d’une fonction strictement monotone.
Soit f une fonction définie sur un intervalle I contenant deux réels a et b tels que a < b.
Si f est continue et strictement monotone sur [a ; b], alors pour tout réel k compris entre f (a)
et f (b), il existe un unique réel c appartenant à [a ; b] tel que f (c) = k.

Matrices et opérations : cours de maths en terminale spécialité en PDF.

Matrices et opérations à travers un cours de maths en terminale spécialité. I. Notion de matrices : Définition : n et p désignent des nombres entiers naturels non nuls. Une matrice de format ( ou taille ) (n,p) est un tableau de nombres réels à n lignes et p colonnes. Exemple : La matrice M ci-dessous […]

Arithmétique : cours de maths en terminale spécialité en PDF.

L’arithmétique dans un cours de maths en terminale spécialité. Ce cours fait intervenir les notions de divisibilité, multiples, diviseurs, congruences, les nombres premiers et la décomposition en facteur premier d’un nombre entier. Egalement la division Euclidienne, le théorème de Bézout et le théorème de Gauss. I. Divisibilité. Définition : Soient a et b deux entiers […]

Les suites numériques : cours de maths en terminale en PDF.

Les suites numériques dans un cours de maths en terminale en enseignement obligatoire. Nous étudierons la définition d’une suite numérique et son comportement. I . Comportement d’une suite numérique : Définition : Une suite est une application de l’ensemble dans l’ensemble . . Définitions : Une suite est croissante . Une suite est décroissante . […]

Notez Mathovore !

Votre avis est précieux pour nous aider à améliorer l'application

share Partager