Brevet de maths 2023 : sujet blanc pour réviser le brevet du collège.

webmaster
11 avril 2025

Le brevet de maths 2023 avec un sujet blanc pour le DNB des collèges en troisième (3ème).Ce sujet contient 9 exercices indépendants.

La calculatrice est autorisée. Durée de l’épreuve : 2 h. Notation sur 40.
La clarté de la présentation, la qualité de la rédaction comptent sur 4 points dans la note finale.
Toutes les réponses doivent être soigneusement justifiées sauf indications contraires.

Exercice 1 : (5 pts)

1. Calculer les expressions A et B et donner le résultat sous la forme d’une fraction
irréductible :

A=\frac{\frac{-1}{4}+6}{\frac{7}{10}-6}                               B=1+\frac{8}{7}\times \frac{35}{9}

2. Calculer l’expression C et donner l’écriture scientifique du résultat :

C=\frac{10^3\times 10^{-6}\times 2700\times 10^5}{24000\times \left ( 10^{-5} \right )^2}

3. Développer et réduire :

D=(3x-3)^2-5(x+3)(2x+1)

 

Exercice 2 : (5 pts)

On donne le programme de calcul ci-dessous :

Programme :
– Choisir un nombre
– Lui ajouter 2
– Calculer le carré de cette somme.
– Soustraire 9 au résultat obtenu.

1. On choisit 3 comme nombre de départ.
Montrer que le résultat du programme est 16.
2. On choisit (-1) comme nombre de départ.
Calculer le résultat du programme.
3. On appelle x le nombre de départ. Ecrire le résultat du programme de calcul en fonction de x.
4. Factoriser cette expression.
5. Quel(s) nombre(s) faut-il choisir au départ pour que le résultat du programme soit nul ?

Exercice 3 : (4 pts)

Les informations suivantes concernent les salaires des hommes et des femmes d’une même entreprise :

Salaires de chaque femme :
1 200 € ; 1 230 € ; 1 250 € ; 1 310 € ; 1 370 € ; 1 400 € ; 1 440 € ; 1 500 € ; 1 700 € ; 2 100 €

Salaires des hommes :
Effectif total : 20
Moyenne : 1 769 €
Etendue : 2 400 €
Médiane : 2 000 €
Les salaires des hommes sont tous différents.

1. Comparer le salaire moyen des hommes et celui des femmes.
2. On tire au sort une personne dans l’entreprise. Quelle est la probabilité que ce soit une femme ?
3. Le plus bas salaire de l’entreprise est de 1 000 €. Quel salaire est le plus élevé ?
4. Dans cette entreprise combien de personnes gagnent plus de 2 000 € ?

Exercice 4 : (4 pts)

Dans une urne il y a 1 boule jaune (J), 4 boules bleues (B) et 2 boules rouges (R), indiscernables au toucher. On tire successivement, deux boules, avec remise (on remet la première boule avant de prendre la deuxième).
1. Construire l’arbre des possibles décrivant l’expérience aléatoire ; placer les probabilités sur chaque branche.
2. Quelle est la probabilité que la première boule soit rouge et la deuxième boule soit bleue ?
3. On considère l’évènement A :  » la 2ème boule est jaune’’
a. Quelles sont toutes les issues possibles ?
b. En déduire la probabilité de l’évènement A.

Exercice 5 : (4 pts)

1. Construire un triangle ABC tel que : AB = 10,5 cm, AC = 6,3 cm et BC = 8,4cm.
Placer le point E sur la droite (AB) tel que : E \notin [AB] et BE = 4,5 cm.
Tracer la perpendiculaire à la droite (BC) passant par le point E. Elle coupe la droite (BC) en F.
Placer F.
2. Démontrer que le triangle ABC est rectangle.
3. Calculer la longueur BF.
4. Placer les points M et N tels que : M \in [AB], N \in [BC], BM = 5cm et BN = 4cm.
Les droites (MN) et (AC) sont-elles parallèles ? Justifier la réponse.

Exercice 6 : (4 pts)

Cet exercice est un questionnaire à choix multiples. Pour chaque question, une seule réponse est
exacte. L’absence de réponse ou une réponse fausse ne retire aucun point.
Entourer la réponse choisie. Aucune justification n’est demandée .

qcm

qcm

 

 Exercice 7 : (4 pts)

On a utilisé un tableur pour calculer les images de différentes valeurs de x par une fonction f
et par une autre fonction g. Une copie de l’écran obtenue est donnée ci-dessous :

Tableur

Tableur

1. Quelle est l’image de -3 par f ?
2. Calculer f(7).
3. Donner l’expression de f (x).
4. On sait que g (x) = x² + 4. Une formule a été saisie dans la cellule B3 et recopiée ensuite vers
la droite pour compléter la plage de cellules C3: H3. Quelle est cette formule ?

 Exercice 8 : (3 pts)

1. Rendre irréductible le quotient  \frac{126}{175}  en utilisant un calcul de PGCD.
Un commerçant possède 175 boules de Noël rouges et 126 boules bleues. Il a choisi de
confectionner des sachets tous identiques. Il voudrait en avoir le plus grand nombre en utilisant
toutes les boules.
2. Combien de sachets pourra-t-il réaliser ?
3. Combien de boules de chaque couleur y aura-t-il dans chaque sachet ?

Exercice 9 : (3 pts)

Avant l’épreuve, un plan a été remis aux élèves participant à la course.
Il est représenté par la figure ci-dessous :

course

course

On convient que :
– les droites (AE) et (BD) se coupent en C.
– les droites (AB) et (DE) sont parallèles.
– ABC est un triangle rectangle en A.
Calculer la longueur réelle du parcours ABCDE.

Si le travail n’est pas terminé laissez tout de même une trace de recherche. Elle sera prise en compte dans la notation.

Corrigés du brevet de maths Consulter le corrigé en ligne

 

Polynésie Française : brevet de maths 2022 avec sujet et corrigé

Brevet des collèges Mathématiques Polynésie 23 juin 2022 Durée : 2 heures Exercice 1 : 20 points. Pour chacune des quatre affirmations suivantes, dire si elle vraie ou fausse en expliquant soigneusement la réponse. 1. Adriana doit effectuer le calcul suivant :    Affirmation 1 : Le résultat qu’elle obtient sous forme de fraction irréductible […]

Brevet de maths 2024 aux centres étrangers avec sujet et corrigé.

Le sujet et corrigé du brevet de maths 2024 aux centres étrangers. ce sujet permet aux élèves de réviser en ligne et se préparer pour le DNB du collège en mathématiques. Ce sujet du brevet de maths 2024 aux centres étrangers porte sur un QCM sur le calcul numérique et les probabilités., les statistiques. L’étude […]

Asie et Pacifique : brevet de maths 2022 avec sujet et corrigé

DIPLÔME NATIONAL DU BREVET ASIE PACIFIQUESESSION 2022 MATHÉMATIQUES Série générale Durée de l’épreuve : 2 h 00                100 points   Exercice 1 : 20 points. Cet exercice est composé de trois situations qui n’ont pas de lien entre elles. Situation 1 : On considère le programme de calcul ci-dessous : Montrer que si le nombre […]

Notez Mathovore !

Votre avis est précieux pour nous aider à améliorer l'application

share Partager